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Abstract

We propose a new approach to nonlinear time series analysis. We build on the functional-

coefficient autoregressive model of Chen and Tsay [22] by adopting a Bayesian nonpara-

metric perspective. We treat the coefficient functions as stochastic parameters which are

modeled with Gaussian processes. We suggest an empirical Bayes estimation method that

is well-suited for the time series models in hand. In particular, our method allows increased

modeling flexibility while offering parsimonious results. We compare our method to para-

metric and nonparametric alternatives and highlight some of its conceptual and practical

advantages. We also develop an approximate framework for inference that is computation-

ally efficient and allows us to work with large data sets. Based on this framework, we extend

our method to multivariate and state-space models. Moreover, we give some theoretical in-

sights into our approach by proving the consistency of our nonparametric estimates in a

frequentist setting. We address further questions of inference by suggesting an integrated

model selection procedure and various diagnostics. Finally, we illustrate our methodology

with three applications to real data sets in different contexts. Specifically, we present exam-

ples on a univariate series, a large bivariate series, and a state-space model, the first coming

from natural sciences and the last two from financial econometrics. For all three examples

we also present results from competing models, and we demonstrate the improvements that

our method can provide.
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Chapter 1

Introduction

This thesis concerns nonlinear time series analysis using nonparametric estimation based on

Gaussian Process (GP) regression. The subject of analysis is real-valued series, we do not

explicitly aim at discrete observations such as count or categorical data. Nonparametric

methods based on GPs have recently attracted a lot of attention from both the statistics

and the machine learning community and have found diverse applications in regression and

classification, see Rasmussen and Williams [96] for an overview. We concentrate on GP

regression, which can be viewed as the Bayesian counterpart of nonparametric estimation

techniques such as kernel regression and smoothing splines. We propose a novel methodol-

ogy for performing time series analysis by extending the range of applications of GPs to this

setting. Our treatment of time series with GP regression has significant departures from

that of i.i.d. data which is typically found in the literature. Our main contribution lies

in customizing the methodology, paying special attention to the nature and characteristics

of time series data. In particular, we address practical issues of estimation and prediction,

computational efficiency, model selection and diagnostics, as well as the theoretical prop-

erties of our model. The significance of all these becomes apparent in subsequent parts of

the thesis.
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CHAPTER 1. INTRODUCTION 2

In this chapter, we establish the relevant framework by reviewing existing approaches for

time series analysis. First we briefly look at linear time series, since they constitute the

foundation of the field; we point out important properties but also their limitations. We

move on to nonlinear time series and we define the particular area that we focus on within

the broad spectrum of nonlinear behavior. We make a distinction between parametric and

nonparametric estimation and we discuss different methods within each class. The methods

in the later class are of particular interest because they are directly comparable to ours.

Finally, we give an outline of the remaining chapters of the thesis, highlighting the most

important points.

1.1 Linear Time Series Models

Linear models play a dominant role in the field of time series analysis, the autoregressive

moving average (ARMA) model

Xt =

p
∑

i=1

φiXt−i +

p
∑

j=1

θjεt−j + εt (1.1)

being the most widely used and extensively studied time series tool. Brockwell and Davis [14]

give a comprehensive account of linear time series, providing the methodological and theo-

retical framework around the ARMA model and its equivalent frequency domain analysis.

The significance of linear models stems mainly from the powerful Wold representation the-

orem, which states that every zero-mean, covariance-stationary purely stochastic process

can be represented as an infinite order MA process Xt =
∑∞

i=0 ψiεt−i, where {εt} is a white

noise sequence. Moreover, this infinite MA process can be closely approximated by a finite

ARMA process, which can be treated more efficiently for estimation and prediction.
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Despite their ease of use and the generality of the previous result, linear models are not a

universal solution to all time series problems. For one, the order of the ARMA model might

be too high for practical purposes, in cases where nonlinear models can be more succinct.

More importantly, the representation specifies the sequence {εt} only up to second moments,

which does not require it to be independent of the past of {Xt}. Consequently, the best

mean square predictor of the series can be quite different from the best linear predictor of the

MA representation. The full strength of ARMA models is realized for Gaussian time series

which are uniquely determined by their second order properties, i.e. the autocorrelation

function, and the same applies to spectral methods. For more general processes, however,

the second order properties are not always sufficient and there exists a whole range of

behaviors which can not be adequately described by linear models. Examples include the

presence of limit cycles, time irreversibility and bistability, among others; more details on

nonlinear characteristics of time series are given in Tong [114] and Chen [20].

1.2 Nonlinear Time Series Models

The limitations of linear models have spurred interest in the field of nonlinear time series

analysis and during the last couple of decades there has appeared a plethora of new models

and estimation techniques. The majority of these are parametric in nature, but recently and

with the advent of increased computational power attention is shifting to nonparametric

methods. The range of nonlinear models is vast since it encompasses every departure from

linearity, but we narrow the scope of our work to models for the conditional mean of the

process. For example, we do not consider nonlinear models for the variance, such as the

autoregressive conditional heteroskedastic (ARCH) model of Engle [34] and its numerous

variants.

In what follows, we give a brief description of the relevant nonlinear models; more details
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are given in the review article of Härdle, Lütkepohl and Chen [51] and in Fan and Yao [36].

All of the models we will be looking at fall under the nonlinear autoregressive (NLAR)

category

Xt = f(Xt−1, . . . , Xt−p) + εt (1.2)

where {εt} is a white noise sequence, independent of the past of {Xt}. The function f

defines the conditional mean of Xt given the past values (Xt−1, . . . , Xt−p) of the series; it

does not include lagged error terms, in a MA fashion, because they are unobserved and

complicate estimation considerably. In the parametric setting, we assume that the function

f belongs to a specific class that is characterized by a fixed and finite number of parameters.

Choosing a particular parametric form usually requires some knowledge of the character-

istics of the data and can lead to modeling biases if the class of functions is too narrow.

Another suggestion is to use neural networks that have universal approximation properties,

but the resulting models tend to be over-parametrized. For this reason, nonparametric

estimation techniques have been proposed which allow f to belong to some flexible class

of functions. Three such common techniques are kernel, local polynomial and smoothing

spline regression; a description of these can be found in Wasserman [120]. Despite its gen-

erality, the model in (1.2) has the significant disadvantage that it suffers from the curse

of dimensionality. The term is used to describe the challenges that arise in nonparametric

estimation in high dimensions and is a well known phenomenon, see Hastie, Tibshirani and

Friedman [58]. Thus, it is helpful to impose a more parsimonious structure on model (1.2).

A popular approach for avoiding the curse of dimensionality in nonparametric regression is

to assume an additive form for f . This leads to the generalized additive model (GAM) of

Hastie and Tibshirani [55]; in the context of time series, it becomes the nonlinear additive
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autoregressive (NLAAR) model

Xt = f1(Xt−1) + . . . + fp(Xt−p) + εt. (1.3)

Estimation for the NLAAR models is discussed in Chen and Tsay [23] who propose two

backfitting algorithms, the alternating conditional expectation (ACE) of Breiman and Fried-

man [11] and the BRUTO algorithm of Hastie and Tibshirani [55]. Chen and Tsay point

out that for time series data which are serially correlated, the performance of backfitting al-

gorithms can be poor. As an improvement on backfitting Masry and Tjøstheim [81] suggest

an estimation procedure for the functions based on projections, a similar method for inde-

pendent data using marginal integration appearing in Linton and Nielsen [75]. Nevertheless,

the projections are based on the empirical distribution which can be inaccurate for higher

orders and, on top of that, additive models are generally susceptible to non-identifiability.

A nonlinear model which is more favored in time series, and which is also the focus of

our work, is the functional-coefficient autoregressive (FAR) model of Chen and Tsay [22].

It is the time series analogue of the varying-coefficient regression model of Hastie and

Tibshirani [57] and is given by

Xt = f1(U
(1)
t )Xt−1 + . . .+ fp(U

(p)
t )Xt−p + εt. (1.4)

Note that the arguments U
(i)
t to the functional coefficients fi are not necessarily equal

to Xt−i, although they have to be Ft−1-measurable w.r.t. the observations and will, in

general, depend on lagged values of Xt. Thus, the FAR model (1.4) does not strictly nest

the NLAAR model (1.3), in fact it is usually the case that all functional coefficients share

the same argument. A considerable advantage of the FAR over the NLAAR model is that

it is less prone to non-identifiability, since the functional coefficients fi are multiplied with
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the lagged regressor variables Xt−i. Moreover, it retains all the benefits of the NLAAR

model, such as parsimony and ease of interpretation. Some of the most popular time series

models belong to the FAR family, and we next review their characteristics and estimation.

1.2.1 Parametric Models

We begin our exposition of parametric models by introducing the concept of regimes, which

allows us to decompose complex dynamical systems into simpler subsystems. More specif-

ically, we consider piecewise linear models where each regime’s dynamics are described by

an autoregression. To fix ideas, we present a simple first order autoregressive model with

two regimes

Xt =







α
(1)
0 + α

(1)
1 Xt−1 + ε

(1)
t , if It = 1

α
(2)
0 + α

(2)
1 Xt−1 + ε

(2)
t , if It = 2

(1.5)

where {α(i)
0 , α

(i)
1 }i=1,2 are the autoregressive coefficients within each regime and It ∈ {1, 2}

is an Ft−1 measurable variable. In terms of the FAR paradigm, the coefficients can be

viewed as piecewise linear functions of the common argument variable It, where we also

permit the means and error variances to change between regimes. The variable It which

controls the regime is instrumental for the properties and statistical analysis of these mod-

els and there are different approaches for specifying it. The most common is to make It

depend on some lagged value Xt−d of the process itself, where Xt−d is called the threshold

variable and d the time delay. The resulting model is known as the self-exciting threshold

autoregressive (SETAR) model or simply as the threshold autoregressive (TAR) model, the

latter term sometimes applied to more general settings. It was introduced by Howell Tong

who gives a comprehensive survey in his book [114], together with some justification drawn

from dynamical systems. The regimes of the TAR model are defined according to the region

where the threshold variable Xt−d lies, so for the example in (1.5) we would have to select
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a set A ⊂ R such that It = 1 if Xt−d ∈ A and It = 2 otherwise. Notable alternatives to

the TAR specification include the Markov switching model of Hamilton [50], where It as

an independent hidden Markov process, and the smooth transition autoregressive (STAR)

model of Teräsvirta [111], which instead of picking a single regime averages the conditional

mean dynamics across all regimes and with weights based on Xt−d. Formally, the Markov

switching model does not belong to the FAR family because It is not observable. We will

concentrate on the TAR model, since it is the most relevant for our purposes.

It is conceptually easy to extend the TAR model by allowing higher order autoregression,

more regimes and more variables for defining the regimes. Higher order autoregression can

be dealt with easily, but this is not true for higher number of regimes or, especially, of

variables that define them. The reason is that we decide the regime in terms of partitions of

Rq, where q is the number of threshold variables, and these can become very complicated as

q or the size of the partition grow. For practical applications, TAR models are restricted to

a few, say k, regimes and a single threshold variable Xt−d. The general form under which

TAR models are usually encountered is

Xt =
k∑

i=1

{

α
(i)
0 + α

(i)
1 Xt−1 + . . .+ α(i)

p Xt−p + ε
(i)
t

}

I(Xt−d ∈ Ai) (1.6)

where I(·) is the indicator function and the sets {Ai} of the partition are intervals, Ai =

(ri−1, ri]. Sometimes, the autoregressive order p is allowed to vary within each regime. The

parameters of interest are the autoregressive coefficients {α(i)
j }, which are referred to as the

autoregressive parameters, and the order p, the number of regimes k, the time delay d and

the thresholds r = {r0 = −∞, r1, . . . , rk−1, rk = ∞}, which are referred to as the structural

parameters.

Estimation of the autoregressive parameters given knowledge of the structural parameters is
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straightforward, using either conditional least squares or conditional maximum likelihood.

The real challenge lies in the selecting k, d and estimating the thresholds. The last poses a

serious difficulty since both the likelihood and the sum of squares functions are discontinu-

ous w.r.t. r, as demonstrated by Tong [114]. Chan [18] treats the case where k = 1 and p is

known, and shows that least squares estimation for the remaining parameters is consistent,

also providing their asymptotic distribution. However, maximization of either objective

function w.r.t. r requires a discrete search. Tong and Lim [115] suggest using the quantiles

of Xt−d as candidates for r1 in the two regime case and use maximum likelihood, together

with AIC for the remaining parameters. Notice that for k > 2, the discrete search must

over done over ordered sequences. To simplify matters, Tsay [116] proposes a model fitting

procedure based on graphical methods. He plots the t-ratio statistic of the coefficients of

a two regime TAR model versus candidate thresholds and selects the (possibly more than

one) final thresholds by visual inspection for abrupt changes. The delay d is selected by

a nonlinearity test, similar to the one of Petrucelli and Davies [93], and other parameters

are treated by AIC. Finally, Geweke and Terui [41] look at estimation from a Bayesian

perspective using MCMC. In practice, either contextual knowledge or ad hoc choices are

often used for defining some of the structural parameters. Despite any issues in fitting, the

TAR model has proved successful for applications in various fields and, moreover, it usually

affords an easy interpretation.

There are also parametric models that are not based on the regime principle. The most

important one, belonging to the FAR class, is the exponential autoregressive (EXPAR)

model of Haggan and Ozaki [49]

Xt =

p
∑

i=1

(
αi + (βi + γiXt−d) exp{−θiX

2
t−d}

)
Xt−i + εt. (1.7)

which is readily estimated by conditional least squares. The EXPAR model was developed
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to describe amplitude dependent frequency phenomena typically found in random vibra-

tions, but is not widely used outside this context. For completeness, we also mention two

eminent parametric models which depart from the FAR dynamics. The first is the bilin-

ear model of Granger and Anderson (see Subba Rao [95]), which is an ARMA model with

additional cross-terms between the AR and MA parts. The second is the random coeffi-

cient autoregressive (RCAR) model of Nicholls and Quinn [87], for which the autoregressive

coefficients at each time are independent random draws from a fixed distribution. Both

have attracted attention in the literature, but we will not dwell on them because they are

narrower in scope than the TAR model and not particularly pertinent to the remainder.

1.2.2 Nonparametric Models

We turn our attention to nonparametric estimation, which allows more flexible functional

forms for the coefficients in (1.4). A first nonparametric estimation approach was proposed

by Chen and Tsay [22], who use the arranged local regression (ALR) procedure. This

procedure requires that all functional coefficients share the same argument variable U
(1)
t =

. . . = U
(p)
t = Ut, similarly to the unique threshold variable that defines the regimes in the

TAR model. The main idea dates back to Tsay [116] and it involves arranging the data
{
Xt, [Xt−1, . . . , Xt−p]

}
(viewed as the response and regressor variables) w.r.t. the common

argument Ut. In order to estimate the functional coefficients at a particular value U , we

put a window around U and perform a linear regression over the arranged data points with

Ut falling within that window

Xt = a1Xt−1 + . . .+ apXt−p; ∀t such that Ut ∈ [U − h,U + h] (1.8)

The estimates of the functional coefficients at U are given by the fitted regression parame-

ters f̂i(U) = âi, for i = 1, . . . , p. The estimation of the function is thus conducted by a series

of local regressions, in which the data are arranged with regard to their position relative
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to the function’s argument variable Ut. This is essentially a variant of kernel regression

with a simple boxcar kernel, also known as binning. In its original version, Chen and Tsay

actually suggest using both a window and a minimum number of data K for controlling the

smoothing. This avoids poor estimation in regions were the data are sparse, such as the

boundaries of the range of Ut. For a given data set, the resulting function estimates from

the ALR procedure will be step functions, the fitted parameters in the regression change

only according to whether data points Ut enter or exit the window. The authors in [22] do

not actually work with the nonparametric estimates of the functions, but they use them

to infer a parametric functional form for the coefficients. They then use the data again to

estimate the parameters of the hypothesized model by least squares. In particular, they do

not address the selection of the smoothing parameters h and K, but they advocate repeat-

ing the procedure for different values and inspecting the results. They do provide, however,

mean square consistency results for the ALR estimated functions.

A fully nonparametric approach, similar in spirit to ALR, was taken up by Cai, Fan and

Yao [16], who use local linear regression (LLR). The locality is again induced by a common

function argument variable Ut, but the weighting scheme for neighboring observations is

different since a non-flat kernel is used. Moreover, the authors use a first order (linear)

Taylor approximation of the coefficient function around U0 in the following fashion

fi(U) ≈ ai + bi(U − U0). (1.9)

The local linear estimates of the functional coefficients at U are given by f̂i(U) = âi, where

{âi, b̂i} are such that they maximize the weighted sum of squares

∑

t

(

Xt −
p
∑

i=1

(

ai + bi(Ut − U)

)

Xt−i

)2

Kh(Ut − U), (1.10)
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where Kh(·) = h−1K(·/h) is a kernel function with bandwidth h > 0. The resulting func-

tional coefficient estimates are smooth functions, with the smoothness controlled by h. The

authors use the Epanechnikov kernel and suggest a multifold cross-validation procedure for

selecting h, which they also extend for the selection of the lag used for U and the autore-

gressive order. They prove the asymptotic normality of the estimates at a given point and

also provide convergence rates.

We point out two limitations of the previous approaches which are both due to the use

of weighting techniques for smoothing. First, all of the coefficient functions must share

the same argument Ut, and second, all of the estimated functions must share the same

smoothing parameter, either the window or the the kernel bandwidth. The reason for this

is that estimation is performed locally, based on some weighting scheme, and locality in

the data must be defined w.r.t. a common variable. TAR models have a common ar-

gument/threshold variable for all coefficients for the same reason; they can be viewed as

ALR estimates with fixed windows covering each regime. In practice, these limitations can

lead to substantial modeling and estimation disadvantages. It is possible to use backfitting

algorithms as in the NLAAR model to relax the common argument restriction, but their

performance in time series does not guarantee an improvement. In general, integrated esti-

mation is preferable to profile methods such as backfitting, and its theoretical development

is also easier. The problem of common smoothness was acknowledged by Fan and Zhang

[64] for i.i.d. data and they proposed a two-step local polynomial regression procedure

to rectify it, an initial local linear and a subsequent local cubic. In their approach, both

local regressions suffer from the aforementioned problem, but they show that the resulting

functional coefficient estimates achieve optimal rates of convergence. Their results do not

apply directly to time series, however, so this method was not suggested for the FAR model.
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For the varying coefficient model in the regression setting, other estimation approaches have

been proposed in order overcome these limitations. Hastie and Tibshirani [57] use smoothing

splines, which allow the coefficient functions to have different arguments. They estimate the

model by minimizing the least squares plus a smoothness penalty on the functions, where

the later can vary between functions. This approach leads to a cubic spline specification

for each function fi, with knots at the locations where each argument is observed. They

show that estimating the spline coefficients is computationally expensive in this setting, and

fall back to backfitting algorithms for efficiency. Huang and Shen [60] propose a regression

spline method for time series which bypasses the need for backfitting. The authors do not

use regularization because they control the smoothness of the functions by the number of

knots. The resulting representation of the functional coefficients is

fi(U) =

ki∑

j=1

αi,jBi,j(U), i = 1, . . . , p, (1.11)

where Bi,j are the spline basis functions, αi,j are their parameters and ki is the number of

spline bases used (ki is directly related to the number of knots). The parameters αi,j are

estimated by minimizing the conditional sum of squares

∑

t



Xt −
p
∑

i=1





ki∑

j=1

αi,jBi,j(U
(i)
t )



Xt−i





2

(1.12)

The authors suggest using equally spaced knots and AIC to decide their number, motivated

by the performance of their method in simulation experiments. They also suggest AIC for

selecting the argument variables and for identifying the model specification with a greedy

stepwise search. They argue that for most applications, the number of required knots will

be small, usually less than five for each function, and the resulting estimation procedure will

be fast. For their examples, the authors use the same arguments and they sometimes even
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use the same number of knots for each function. This practice avoids the need to calculate

multiple spline bases and speeds up the procedure even more. On the theoretical side, they

show the consistency of their estimates as the number of data and knots increases.

1.3 Outline

The rest of the thesis is organized as follows.

• Chapter 2 presents our approach to Bayesian nonparametric analysis within the FAR

framework. We describe estimation and prediction, and provide a systematic way of

setting up the prior specification and selecting the hyperparameters. We demonstrate

our approach with a real example and comment on qualitative and practical issues.

• Chapter 3 concerns approximate analysis, which is necessary for the computational

efficiency of our method. We review the relevant techniques in the literature and

adapt them to the requirements of our model. The resulting procedure is outlined

and illustrated, and it is also extended to a multivariate and a state-space setting.

• Chapter 4 sheds light on the theoretical aspects of our model. We present its relation to

reproducing kernel Hilbert space methods and use it to establish the consistency of the

functions’ estimators. To this end, we give important conditions for identifiability and

ergodicity. We also present theoretical results for the case of approximate estimation.

• Chapter 5 further develops our methodology by addressing model identification and

diagnostics. For the former, we use information criteria for creating a greedy model

selection procedure, and for the latter, we describe useful residual-based and graphical

procedures.

• Chapter 6 contains three applications of our methodology to real data sets in different

contexts. We look at the famous sunspot series, a bivariate cointegrated system and
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a state-space model for stochastic volatility. We assess the performance and discuss

the characteristics of our approach in relation to competing ones.

• Chapter 7 concludes the thesis by synopsizing our work and its main contributions

and by identifying directions for future research.



Chapter 2

Proposed Model

This chapter introduces our proposed modeling and estimation approach to nonlinear time

series analysis. We essentially build upon the FAR model from a Bayesian nonparametric

perspective, using GPs to describe the uncertainty in the functional coefficients. We describe

the model and present the resulting estimation and prediction procedures. On the practical

side, we discuss the prior specification of our model and focus on empirical Bayes estimation.

We give details on the actual implementation through an example using the Canadian lynx

data. In the end, we comment on our method and compare it to the relevant alternatives.

2.1 Model Description

In this section we describe the formulation of our model and some of its implications. We

begin our exposition by considering the following Markovian FAR model of order p

Xt = f1(U
(1)
t )Xt−1 + . . .+ fp(U

(p)
t )Xt−p + εt (2.1)

where {εt} is a white noise sequence and the variables {U (i)
t }p

i=1 depend on a finite number

d of lagged values of Xt, i.e. they are σ(Xt−1, . . . , Xt−d) measurable. According to the

15
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Bayesian paradigm, we put a prior on the functions {fi}p
i=1 to describe the uncertainty

about them. To this end we use Gaussian Processes, which are stochastic processes whose

finite-dimensional distributions are multivariate normal. This is the most convenient and

popular approach owing to the conjugacy properties of normals, but also because of the

superior theoretical understanding and practical handle that these processes offer. We say

that f follows a GP with mean function µ(·) and covariance function C(·, ·), denoted by

f ∼ GP(µ,C), if for every d-dimensional set of indices {x1, . . . , xd}, the vector of pro-

cess evaluations [f(x1), . . . , f(xd)]
> follows a d-dimensional normal distribution with mean

vector µ = [µ(x1), . . . , µ(xd)]
> and covariance matrix C =

[

{C(xi, xj)}d
i,j=1

]

. Thus, the

formulation of the FAR model in this setting becomes

Xt = f1(U
(1)
t )Xt−1 + . . .+ fp(U

(p)
t )Xt−p + εt (2.2)

fi ∼ GP(µi, Ci); i = 1, . . . , p (2.3)

where µi is the mean function and Ci is the covariance function of the GP for fi, and

where the functional coefficients {fi} are independent of the error sequence {εt} and among

themselves.

We interpret model (2.2-2.3) as follows: first, the functional coefficients fi are drawn in-

dependently from (2.3) and then the series {Xt} is evolved so that it satisfies the usual

FAR dynamics in (2.2), given the function draws. This interpretation of the model as a

data generating mechanism has the disadvantage that it is hard to establish the stability

of the resulting series. There are functional coefficient draws for which the series will be

stationary and others for which it will be explosive. From a modeling perspective, it is not

appealing having to describe the general behavior of a given series in such a probabilistic

manner. Conceptually, we could restrict the sample space of the coefficient functions so

as to ensure stationarity, but we do not pursue this for two reasons. First, there is no
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strict characterization of the functions that lead to either behavior, there are at best only

sufficient conditions on these functions which are pretty restrictive. Chen [20] gives such

conditions for stationarity and we go over them in detail in Chapter 4, where we look at

theoretical aspects of our model. Second, even if we thus restricted the space of possible

functions to ensure stability, it would be very difficult to carry out the calculations required

for estimation because the conjugacy would no longer hold. Therefore, we use model (2.2-

2.3) mainly as a vehicle for statistical estimation and prediction, for all other considerations

we assume the data come from a true, fixed FAR model.

The primary function of our interpretation of model (2.2-2.3) is to analyze the paths of the

process conditionally on the past. The advantage in this case is that the process can be

evolved sequentially in time. To give an example, suppose the first q = p ∨ d data points

X1, . . . , Xq are given and we want to generate T subsequent observations Xq+1, . . . , Xq+T

from our model. Using the previous definition, we would first generate the functions {fi}p
i=1

from (2.3) and then create the series Xq+1, . . . , Xq+T iteratively, from their conditional

dynamics in (2.2). In practice, we can not really draw an entire function, but fortunately the

generated data depend only on a finite number of evaluations from these random functions.

Moreover, this finite vector of function evaluations follows a multivariate normal distribution

which can be factorized in a sequence of conditional normal distributions. Specifically,

letting fi,t = fi(u
(i)
t ) for fixed arguments u

(i)
t , we have

π(fi,q+1, . . . , fi,q+T ) = π(fi,q+1)π(fi,q+2|fi,q+1) . . . π(fi,q+T |fi,q+T−1, . . . , fi,q+1) (2.4)

where all the distributions are normal with moments derived from the mean and covari-

ance functions µi and Ci. Therefore, we can readily simulate a path with the follow-

ing scheme: at every time t = q + 1, . . . , q + T , we know the values of X1, . . . , Xt−1,

{U (i)
q+1, . . . , U

(i)
t }p

i=1 and {fi,q+1, . . . , fi,t−1}p
i=1. First, we generate fi,t given fi,q+1, . . . , fi,t−1
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from a conditional normal for each i and an independent error εt, and then we calculate

Xt = f1,tXt−1 + . . . + fp,tXt−p + εt. The random vector Xq+T , . . . , Xq+1 thus created has

the same conditional distribution, given X1, . . . , Xp, as one coming from model (2.2-2.3).

This sequential approach is possible because we condition on the initial observations, whose

distribution is generally intractable. In the same way, we can calculate the conditional

likelihood of our model, construct predictions and update estimations in an on-line fashion

as new data arrive.

We also consider extensions of our model by allowing general regressors and functional co-

efficient arguments, X (i) and U (i) respectively, which can now be exogenous to the response

Y . The model becomes

Yt = fi(U
(1)
t )X

(1)
t + . . . + fi(U

(p)
t )X

(p)
t + εt (2.5)

fi ∼ GP(µi, Ci); i = 1, . . . , p (2.6)

which is viewed as a time series regression with varying coefficients. The only requirement on

the variables {X (i)
t , U

(i)
t } is that they be known by time t−1, i.e. they are Ft−1-measurable

for some observable filtration F , which need not be generated only by Yt. The time subscript

is somewhat counter-intuitive, but it helps in keeping the notation simple and representing

the model as a regression. If there is at least one exogenous variable in (2.5), the model

is not sufficient as a data generating mechanism or for making predictions unless we know

the dynamics of the exogenous variables. Therefore, model (2.5) is used for describing the

conditional dependence structure of Yt on the rest of the variables. Other variations include

the NLAAR specification by setting all regressors X (i) equal to one. If only X (1) = 1,

then our model can accommodate a varying mean level. We can also allow a linear AR

specification by forcing the coefficients to be random constant functions, which removes the

dependence on the argument variables U (i). This can be achieved by imposing a constant
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covariance function C(·, ·) = ν. Moreover, we can create hybrid specifications by combining

varying or constant coefficient functions in multiplicative or additive terms for the dynamics,

both for endogenous or exogenous variables. This flexibility will prove useful later on, when

we look at model selection procedures. Finally, we also mention an important characteristic

that our model inherits from its FAR dynamics. The model is scale invariant but not,

in general, location invariant, unless it includes a varying mean function with argument

variable the Cartesian product of all other coefficients’ arguments. This should be kept in

mind when transforming the data prior to the analysis, since, for example, demeaning can

lead to inconsistent results.

2.2 Estimation

We now turn attention to estimating the coefficients using our model. We assume through-

out that we observe data
{
yt, {x(i)

t , u
(i)
t }p

i=1

}T

t=1
from the general model (2.5-2.6), which also

covers the Markov FAR model (2.2-2.3) as a special case. If there are endogenous variables

in the model dynamics, we treat the first q observations as fixed, where q is the maximum

lag of Yt used in defining X
(i)
t and U

(i)
t . For simplicity we assume the sample runs from 1

to T . We work with the conditional likelihood of the data, where the conditioning is with

respect to the regressor and functional coefficient argument variables. Using the conditional

likelihood is a common approach in nonlinear time series analysis, since the exact likelihood

is almost always intractable. This approach is justified by the ergodic theorem for densities

which states that, under certain stability conditions on the series, the conditional likelihood

converges to the exact likelihood as the amount of data increases, see Barron [5]. We also

assume that the mean and covariance functions of our prior specification in (2.6) are fixed,

we discuss how to choose these in later sections. Finally, we assume the error terms are

independent and identically distributed normal random variables, εt
i.i.d.∼ N (0, σ2), in order

to take advantage of the conjugacy properties of normals.
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First, we introduce some notation: let fi,t = fi(u
(i)
t ) and define the following

f>
i = [fi,1, fi,2, . . . , fi,T ]

f> =
[

f>
1 ,f

>
2 , . . . ,f

>
p

]

µ>
i =

[

µi(u
(i)
1 ),µi(u

(i)
2 ), . . . ,µi(u

(i)
T )
]

µ> =
[

µ>
1 ,µ

>
2 , . . . ,µ

>
p

]

Ci =

[{

Ci

(

u(i)
s , u

(i)
t

)}T

s,t=1

]

C =












C1 0T×T . . . 0T×T

0T×T C2 . . . 0T×T

...
...

. . .
...

0T×T 0T×T . . . Cp












The vector f is the random vector of the functional coefficient evaluations of the model,

ordered first by function and then by time. The vector µ is the prior mean and the matrix

C is the prior covariance matrix of f , given by the functions {µi} and {Ci}. C has a

block diagonal structure as a result of the prior independence of the functions fi. The prior

distribution of the functional coefficient evaluations becomes

π(f |u) ∝ exp

{

−1

2
(f − µ)>C−1(f − µ)

}

(2.7)

where u stands for all the functional coefficient arguments’ values. Even if the {U (i)}

variables depend on the response variable Y , we can still use the sequential conditioning

approach we mentioned previously in order to express the prior of f as a multivariate

normal. For the likelihood, we also define

y> = [y1, y2, . . . , yT ]
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x>
i =

[

x
(i)
1 , x

(i)
2 , . . . , x

(i)
T

]

Xi = diag(xi)

X> = [X1,X2, . . . ,Xp]

Σ = σ2IT

The vector y contains the responses and X can be thought of as an expanded design matrix.

The conditional likelihood of the data is

L(y|x,f) ∝
T∏

t=1

π(yt|{x(i)
t , fi,t}p

i=1)

∝ exp

{

− 1

2σ2

T∑

t=1

(
yt − f1,tx

(1)
t . . .− fp,tx

(p)
t

)2

}

(2.8)

where x stands for all the regressor variables’ values. We rearrange the likelihood, expressing

it with in terms of f , in order to make it compatible with the prior

L(y|x,f) ∝ exp

{

−1

2

[

f>(XΣ−1X>)f − 2f>(XΣ−1y)
]}

(2.9)

Combining the prior and the likelihood, the resulting posterior of the observed function

evaluations f is multivariate normal with moments

E[f |y,x,u] = (C−1 + XΣ−1X>)−1(C−1µ + XΣ−1y)

= µ + CX(X>CX + Σ)−1(y − X>µ) (2.10)

Var[f |y,x,u] = (C−1 + XΣ−1X>)−1

= C − CX(X>CX + Σ)−1X>C (2.11)

The first expression for the mean comes in the usual Bayesian fashion of a weighted average

between the prior and the data. The second expression is the one that we actually use in
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practice because it involves the inverse of the smaller T × T matrix X>CX + Σ, instead

of the (pT )× (pT ) matrix C−1 + XΣ−1X>. Moreover, the smaller matrix inversion is nu-

merically stable due to the added diagonal matrix Σ. The posterior mean in (2.10) serves

as our Bayes estimate of f .

More generally, we show that each functional coefficient follows a GP a posteriori. To verify

this, we study the posterior distribution of an arbitrary finite vector of function evaluations

fN . This vector can contain evaluations of any function fi at any set of points {u(i)
j }ni

j=1

f>
N =

[

f1(u
(1)
1 ), . . . , f1(u

(1)
n1

), . . . , fp(u
(p)
1 ), . . . , fp(u

(p)
np

)
]

(2.12)

The vector fN depends on the data only through the correlation of its elements with the

observed function evaluations. That is, each new evaluation fi(u
(i)
j ) of the ith function is

only correlated with the evaluations contained in the vector f i that appear in the likelihood.

The prior mean of fN is

µ>
N =

[

µ1(u
(1)
1 ), . . . , µ1(u

(1)
n1

), . . . , µp(u
(p)
1 ), . . . , µp(u

(p)
np

)
]

(2.13)

and the prior covariance of [f>,f>
N ]> is






C CN

C>
N CNN




 (2.14)

which we view as a partitioned matrix, with partitioning according to the vectors f , f N .

Note that each element of fN will only be correlated with elements from the same function,

so both CN and CNN will be sparse. In particular, if fN contains only one evaluation from

each function then CNN will be diagonal and C>
N will have nonzero elements only where
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its ith row is underneath C’s ith block. The joint prior of [f>,f>
N ]> is






f

fN




 ∼ N











µ

µN




 ,






C CN

C>
N CNN









 (2.15)

After multiplying with the likelihood and integrating out f we get that the posterior of f N

is normal, with moments

E[fN |y,x,u] = µN + C>
NX(X>CX + Σ)−1(y − X>µ) (2.16)

Var[fN |y,x,u] = CNN − C>
NX(X>CX + Σ)−1X>CN (2.17)

By letting fN contain evaluations from a single function only, it is obvious that the posterior

distribution of each function is again a GP, with mean and variance functions depending

on the data. The above formulas are the result of straightforward normal calculations,

analogous to those for the Bayesian linear model, see e.g. Lindley and Smith [74].

Besides the functional coefficients themselves, it is practically and conceptually advanta-

geous to look at the conditional mean of the observations. We define the conditional mean

Zt as the quantity

Zt = E[Yt|{X(i)
t , U

(i)
t }p

i=1] =

p
∑

i=1

X
(i)
t fi(U

(i)
t ) (2.18)

where the expectation is taken with respect to the error term’s distribution. The condition-

ing refers to the variables X (i) and U (i), and not the functional coefficients. This means

that we treat X (i), U (i) as known, similarly to exogenous variables in a regression, and

that all the uncertainty about Zt comes from the random functional coefficients. Since the

functional coefficients follow GPs and Zt is a linear combination of them, it will follow a

normal distribution. More specifically, letting z> = [Z1, Z2, . . . , ZT ] = X>f we look at the
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prior and posterior distribution of z, which are both multivariate normal. The prior mean

of z is

E[z|x,u] = X> E[f |u] = X>µ (2.19)

where the expectation is taken with respect to the prior measure of the functional coeffi-

cients. The prior covariance is

Var[z|x,u] = X> Var[f |u]X = X>CX

=

p
∑

i=1

X>
i CiXi =

p
∑

i=1

(xix
>
i ) ◦ C i (2.20)

where ◦ is the Hadamard product. The posterior mean of z is given by

E[z|y,x,u] = X> E[f |y,x,u] = X>(C−1 + XΣ−1X>)−1(C−1µ + XΣ−1y)

= Σ(Σ + X>CX)−1X>µ + X>CX(Σ + X>CX)−1y

= X>µ + X>CX(Σ + X>CX)−1(y − X>µ) (2.21)

Like before, the expectation is taken with respect to the posterior measure of the functional

coefficients. Actually, the posterior mean of z is what we would consider as the model’s

fitted values. The second expression in (2.21) represents the posterior mean of z as a

weighted average of its prior mean and the data. The third expression has an interpretation

in terms of a frequentist nonparametric smoothing problem. The fitted values are given

as a bias term X>µ plus the smoothed deviations (y − X>µ) of the data from the bias,

where the smoothing or hat matrix is given by H = X>CX(Σ + X>CX)−1. Moreover,

the posterior covariance of z is

Var[z|y,x,u] = X> Var[f |y,x,u]X
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= X>(C−1 + XΣ−1X>)−1X

= X>CX − X>CX(Σ + X>CX)−1X>CX

= X>CX(Σ + X>CX)−1Σ (2.22)

Finally, we demonstrate how sequential estimation can be efficiently achieved in our model.

We can view the problem of sequential estimation as that of updating the inverse matrix

A−1 = (Σ+X>CX)−1, since this is where the main computational burden lies. Each new

observation (yT+1, {x(i)
T+1, u

(i)
T+1}

p
i=1) adds another dimension to this matrix, so we need to

invert the partitioned matrix

A′ =






A b

b> c






where c = σ2 +
∑p

i=1C(u
(i)
T+1, u

(i)
T+1)(x

(i)
T+1)

2 and b =
∑p

i=1 Xi

[

{C(u
(i)
t , u

(i)
T+1)}T

t=1

]

x
(i)
T+1.

Given knowledge of A−1, we can find A′−1 using the formula for partitioned matrix inverses.

The matrix A′−1 is given in partitioned form as

A′−1 =






Ã b̃

b̃
>

c̃




 (2.23)

where c̃ = 1/(c − b>A−1b), b̃ = −A−1b>c̃ and Ã = A−1 + c̃A−1bb>A−1. This is a

typical normal Bayesian updating calculation (see e.g. Harrison and West [121]) and the

required computations, given A−1, can be performed in time O(T 2). As a result, sequential

estimation scales at the same O(T 3) rate as batch estimation in terms of computations,

practical considerations aside.
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2.3 Prediction

In this section we describe the procedure for making predictions. We consider the Markovian

case which provides a self-contained model for the data, since the presence of exogenous

variables does not permit predictions unless we know how they evolve. One-step-ahead

predictions follow naturally from the posterior distribution of the functional coefficients.

Let x>
N = [x

(1)
T+1, . . . , x

(p)
T+1] and f>

N = [f1(u
(1)
T+1), . . . , fp(u

(p)
T+1)], where {x(i)

T+1, u
(i)
T+1}

p
i=1 are

known by time T . We use formulas (2.16-2.17) to get the posterior mean and covariance

matrix of fN . The next value YT+1 =
∑p

i=1 fi(u
(i)
T+1)x

(i)
T+1 + εT+1 is a linear combination

of fN and the error term εT+1, so its predictive distribution is normal with moments

E[YT+1|y,x,u] = x>
N E[fN |y,x,u]

= x>
NµN + x>

NC>
NX(X>CX + Σ)−1(y − X>µ) (2.24)

Var[YT+1|y,x,u] = x>
N (Var[fN |y,x,u])xN + σ2

= x>
N

(
CNN − C>

NX(X>CX + Σ)−1X>CN

)
xN + σ2 (2.25)

where µN ,CN correspond to the current definition of fN . Note that we account for both

the estimation uncertainty in the coefficient functions and the inherent model uncertainty

coming from the error term εT+1.

For multi-step-ahead prediction we cannot, in general, find the distribution of the process

beyond time T+1 explicitly. The predicted values serve either as regressors or as arguments

to the nonlinear functional coefficients and we thus lose the conditional normality structure.

We can, however, use Monte Carlo simulation from the model posterior to approximate the

predictive distributions, or any other quantity depending on them. For example, if we are

interested in S-step-ahead predictions, we can use a sample of paths {y (b)
T+1, . . . , y

(b)
T+S}B

b=1

coming from the model. One detail that requires attention is that each path y
(b)
T+1, . . . , y

(b)
T+S
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must come from an independent draw of coefficient functions from the posterior. To achieve

this, we first draw y
(b)
T+1 from the normal distribution described above and then we calculate

the regressor and argument variables for time T + 2. The vector of functional coefficient

evaluations required for y
(b)
T+2, must now be drawn from the posterior, also given the values

we generated at time T + 1. Repeating this procedure recursively within each path b, we

have to update the posterior of the functional coefficients at each time, treating our draws

as observations. This Bayesian updating can be performed more efficiently using the se-

quential estimation scheme we presented before.

Nevertheless, this approach can be slow if the number of observations T or the number of

steps S is high, in which case we can use simpler alternatives. Given enough observations,

we can disregard estimation uncertainty by treating the functional coefficients as known

and equal to their posterior mean, the variability in the resulting generated paths coming

solely from the error term. Moreover, if we are interested only in point estimates of the

future values, we can just evolve the process iteratively by generating a single path where

every function evaluation is equal to its posterior mean and the errors are zero. A more

rigorous approach for finding the predictive distributions of the process can be adapted

form the work of Girard et al. [45], who look at a GP regression with random inputs and

propose an approximation scheme for the predictive distribution of the regression function

at a normally distributed argument. Their approximation relies on a second order Taylor

expansion of the posterior mean and the covariance functions of the regression surface and

it preserves normality. Extending their approach in our setting, though, is more involved

because we would have to deal with products of normals, since the regressors are multiplied

with the coefficients. This could degrade the quality of the approximation significantly and

we did not pursue the approach for this reason.
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2.4 Prior Specification

In our discussion of estimation and prediction we assumed the GP prior is fully specified.

In this section we propose a systematic way of setting up this prior. The choices we have

to make concern the prior mean and covariance functions, µi(·) and Ci(·, ·) respectively, for

each fi. For both of these we choose simple forms to describe them. It is obvious from

formula (2.16) that the mean function defines the prior bias of each coefficient function.

Since our procedure is nonparametric and it allows reasonable flexibility for the posterior

estimates, we use a constant mean function µi(·) = µi; the prior bias we thus introduce

favors linearity. For the vast majority of GP regression applications the prior mean is set to

zero, but we will allow it to assume arbitrary values. We do this because later on we look

at models with constant coefficient functions, i.e. random but not varying autoregressive

coefficients, and we do not necessarily want to shrink them towards zero.

The choice of the prior covariance function is more important because it affects the shape and

properties of the coefficient functions, as well as smoothing. In effect, the covariance function

quantifies how close should the function evaluations be depending on their arguments and

the only requirement on it is that it be a positive definite kernel. There are quite a few

covariance kernels suggested in the literature, but by far the most popular is the squared

exponential

C(x,x′) = ν2 exp

{

−‖x − x′‖2

h2

}

(2.26)

This is the one we will use throughout, mainly because it has few parameters with intuitive

roles and because it is easy to compute. This covariance function is described by ν which

controls the prior strength and by h, called the characteristic lengthscale, which controls

the amount of smoothing and is the direct analogue of the bandwidth parameter in kernel
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regression. Another important feature of this covariance function is that it is stationary,

meaning that the smoothing depends only on the distance d = ‖x − x′‖ between the

inputs and not on their position in the input space. Other important alternatives are

the exponential or Ornstein-Uhlenbeck function (COU(d) = ν2 exp{−d/h}, where h > 0),

the Matérn function ( CMatérn(d) = ν2(21−κ/Γ(κ))(
√

2κd/h)κJκ(
√

2κd/h), where κ, h > 0

and Jκ(·) is a modified Bessel function) which is a generalization of both the exponential

and squared exponential covariance functions, and different methods for constructing non-

stationary covariance functions. For a more detailed discussion on these alternatives and

others see Stein [109], Rasmussen and Williams [96] and Paciorek and Schervish [91].

2.5 Hyperparameter Selection

Using a constant mean function µi and a squared exponential covariance function Ci for

each functional coefficient fi, we still have a number of hyperparameters we have to spec-

ify in order to implement our estimation procedure. We collect these, together with the

variance σ2 of the normal error terms, in a single vector θ> = [σ, {µi, νi, hi}p
i=1]. It seems

impossible to assume exact prior knowledge of θ, so we need a method for selecting the

hyperparameters. For this we rely on the (conditional) marginal likelihood of the data

L(y|x,u;θ) =
∫

f
L(y|x,f ;θ)π(f |u;θ)df , where we marginalize with respect to the vector

of function evaluations f . Substituting the prior and the likelihood from (2.7) and (2.9)

and carrying out the integration, we get

L(y|x,u;θ) ∝ |X>CX + Σ|−1/2 ×

exp

{

−1

2
(y − X>µ)>(X>CX + Σ)−1(y − X>µ)

}

(2.27)

We can use this quantity in different ways; one possibility is fully Bayesian and relies on

hierarchical modeling, treating the hyperparameters as random and putting a prior distri-
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bution on them. However, there is no established framework for defining the hyperpriors,

and the posterior distribution of θ is analytically intractable and must be approximated by

MCMC methods. Moreover, this procedure is practically unattractive because of the com-

putational burden of MCMC methods, and because of the additional layer of uncertainty

in the model which we have to take into account when making probabilistic statements or

predictions.

For these reasons, we focus on the empirical Bayes approach which chooses the hyper-

parameters by maximizing the marginal log-likelihood of the data. The main advantage

of this approach is that it is very convenient for selecting multiple parameters because

the gradient of the marginal log-likelihood is also available. Let S = X>CX + Σ and

w = S−1(y − X>µ). Suppose θS is some parameter in S (one of σ, νi or hi in our case)

and let ∂S
∂θS

be the matrix whose elements are the partial derivatives of the elements of S

with respect to θS. The partial derivative of the marginal log-likelihood with respect to θS

is given by:

∂`

∂θS
=

1

2
tr

(

(ww> − S−1)
∂S

∂θS

)

(2.28)

Also, suppose θµ is some parameter in µ (a µi in our case) and let ∂µ
∂θµ

be a vector whose

elements are the partial derivative of the elements of µ w.r.t. θµ. The partial derivative of

the marginal log-likelihood w.r.t. θµ is given by:

∂`

∂θµ
= (y − X>µ)>S−1X> ∂µ

∂θµ
(2.29)

We use the gradient for maximizing the marginal log-likelihood of the data. Getting the

Hessian is more involved and we do not pursue this, but even with the gradient there is a

variety of available schemes to perform this unconstrained optimization task (for positive
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hyperparameters we use a logarithmic transformation to avoid constraints) from simple gra-

dient descent to quasi-Newton methods. Normally, the objective function will have multiple

local maxima and we deal with this issue by a judicious choice of starting values which we

describe at the end of this section.

There are two problems in selecting the hyperparameters of the model, in particular the

prior uncertainties νi, in an empirical fashion. First, we describe these problems and then

we present our approach on how to overcome them, together with the intuition behind it.

The first problem has to do with the distribution of the prior uncertainty among the func-

tional coefficients. Notice that the prior covariance of the conditional means z in (2.20) is

the sum of the covariances of the individual coefficient functions C i weighted by the outer

product xix
>
i of the variables by which the coefficients are multiplied. This can result in a

kind of variance non-identifiability, meaning that, in some cases, we can decrease one νi and

still get almost the same covariance for z by increasing some other νj or σ. This behavior

is not absolute since it depends on the form of xix
>
i , but it is nevertheless common. What

typically happens when we use empirical Bayes to select each νi independently is that the

functions which are very smooth tend to have almost zero prior uncertainty and they end up

being treated as known a priori; we give an example of this behavior in the next section. In

order to overcome this problem we suggest distributing the prior uncertainty evenly among

functions. We present this approach by assuming we have a desired prior uncertainty level

pτ2 for the conditional mean of the observations, i.e. we want the diagonal elements of

Var[z|x,u] to be around pτ 2. The prior uncertainty of Zt|x,u =
∑p

i=1 x
(i)
t fi(x

(i)
t ) depends

also on the regressor values, so we want to balance the contribution of each term x
(i)
t fi(u

(i)
t )

in such a way that (x
(i)
t )2 Var[fi(u

(i)
t )] = (x

(i)
t )2ν2

i ≈ τ2. To this end we set ν2
i = τ2/v2

i

where v2
i =

∑T
t=1(x

(i)
t )2/T , which serves our purpose in the sense that the prior variance

contribution of each term is on average equal to τ 2. Essentially, we are rescaling the re-



CHAPTER 2. PROPOSED MODEL 32

gressor variables by their empirical second order moment, so that in the rescaled model

X
′(i) = X(i)/vi and the prior uncertainty is equally distributed as ν ′2i = τ2. The only

difference is that the rescaling is done through the parameters νi of the functions’ priors.

Moreover, the original and rescaled models are equivalent because of the scale invariance

of the FAR model. Besides making the variance contributions of each term in the model

comparable, this practice is extremely helpful for the numerical stability of the relevant

computations.

Our treatment of prior uncertainty is related to that of empirical Bayes shrinkage estima-

tion; see Efron and Morris [33] for an overview. To demonstrate this argument we consider

empirical Bayes estimation in the multiple linear regression model, which is equivalent to

assuming a priori that the coefficient functions in model (2.5) are constant, i.e. fi(·) = βi.

Let β> = [β1, . . . , βp] be the vector of regression coefficients and Xd = [xi · · ·xp] be the

design matrix. Oman [89] looks at priors of the form β ∼ N (0, τ 2V ), for which the Bayes

estimator (posterior mean) is (X>
d Xd +σ2/τ2V −1)(X>

d Xd)β̂, where β̂ is the least squares

estimate. He specifically considers two cases, one where V = (X>
d Xd)

−1 gives rise to

Stein-type shrinkage and a second where V = I results in ridge-type shrinkage; the term

σ2/τ2 controlling the shrinking strength in both. Our prior covariance specification uses

V = diag([v1, . . . , vp]) = (diag(X>
d Xd/T ))−1 which, being diagonal, raises similarities to

ridge-type estimation. However, we are not actually shrinking the estimates because the

prior mean is data dependent (it maximizes the marginal likelihood) and so it will be close

to β̂.

The second problem concerns the prior uncertainty of the conditional mean of the obser-

vations pτ 2 itself. In general, selecting the hyperparameter τ by maximizing the marginal

likelihood can also lead to problematic behavior. The problem arises when all coefficient
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functions are close to constant, in which case τ will tend to zero, and is again due to non-

identifiability between τ 2 and σ2. We address this by defining ν2 in terms of σ2 in a sensible

way, we propose setting τ 2 = σ2. We look at the consequences of this choice by drawing

an analogy to the previously discussed regression setting. Our prior on the coefficient func-

tions becomes β ∼ N
(
µβ , σ

2 diag(X>
d Xd/T )−1

)
, where µβ denotes the prior mean of β.

The posterior variance of β is σ2
(
X>

d Xd + 1
T diag(X>

d Xd)
)−1

, which is close to the Fisher

information matrix σ2(X>
d Xd)

−1, it falls short of it by approximately a factor of T/(T +1).

The prior covariance choice gives, in relative terms, as much information for the parameter

as that obtained in a single observation. Thus, we manage to relate the prior uncertainty

of the coefficients to that of the observations and make the posterior behave in a frequen-

tist (square root of T ) manner. When the coefficient functions are varying the situation is

more complicated since we perform local estimation. Besides the prior uncertainty νi, the

smoothing parameter hi is also important because it controls information sharing between

observations. As a result, the posterior variance of a varying function evaluated at a given

point will be higher than that of a constant coefficient.

We give a simple demonstration of our treatment of prior uncertainty by looking at the

varying mean model Yt = f(Ut) + εt. We consider the two extreme cases h = 0 and h = ∞

for the smoothing parameter of f , the former corresponding to estimating a separate mean

for each observation and the latter corresponding to estimating a common constant mean.

For h = ∞ we have C = σ21T×T , the vector of functional coefficients being perfectly

correlated since we effectively estimate only one parameter. The posterior variance of f is

Var[f |y,u] = σ2
(
IT − (IT + 1T×T )−1

)
=

σ2

T + 1
1T×T

which is approximately the inverse Fisher information matrix we got before. On the other

hand, if h = 0 we have C = σ2IT , so that each evaluation of f is completely independent



CHAPTER 2. PROPOSED MODEL 34

of all others. The posterior variance of f is

Var[f |y,u] = σ2
(
IT − (IT + IT )−1

)
=
σ2

2
IT

The elements of f are still independent and for each one we essentially use the information

in only one observation, thus resulting in a posterior variance of σ2/2. For positive but finite

values of h, its magnitude will define the extent of information sharing between observations

and the posterior variance of any observed function evaluation will be between σ2/2 and

σ2/(T +1). This behavior holds in general for more complex models; the posterior variance

of any functional coefficient evaluation will be a compromise between the two extremes de-

pending on the amount of smoothing we do, the locations of the arguments and the design

matrix X.

Our discussion implicitly assumed that σ is known, but in fact it also has to be selected

from the data. The greatest danger in setting τ 2 = σ2 is that we tie the error variance

with the parameter of the prior covariance function, which also plays a role in smoothing.

However, we have seen in practice that σ is selected based primarily on the error variance

and does not change a lot whether we define νi in terms of σ or let it be a free parameter.

There are two additional important advantages that result from this practice. For one, we

significantly reduce the number of hyperparameters and this simplifies the nonlinear opti-

mization procedure by making it faster and less prone to local maxima. Moreover, we have

only one hyperparameter, hi, to control the amount of smoothing and this helps later, when

we make comparisons between models with varying and constant coefficients.

The resulting vector of hyperparameters, after fixing the prior uncertainties {νi} in relation

to σ, becomes θ> = [σ, {µi, hi}p
i=1] and we select it by a gradient descent scheme. We

decide the starting values of the algorithm in such a way so that it converges fast to some
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reasonable local maximum. From intuition and some experimentation we have found that

a good choice of starting values is as follows. First, we fit a linear regression to model (2.5),

assuming the coefficients are fixed constants. If there are terms with the same regressor

variables but different arguments, we only keep one of each regressor variable in the design

matrix in order to have full rank. We set the initial value of σ equal to the regression

standard error estimate and the initial values of the prior means µi of the functions equal

to the estimated regression coefficients. If there is more than one function multiplied with

the same regressor, we set the initial value for the mean of each function to be equal to

the estimated coefficient of that regressor divided by the number of functions that share it,

thus splitting the effect of each functional coefficient equally. For the starting values of the

characteristic lengthscale hi we use the sample standard deviation of the argument variable

U (i), which implies moderate smoothness. The starting values selected in this way tend to

give relatively stable and reasonable results.

2.6 Example

We apply our model to a real data set, we look at the famous Canadian lynx data which is

the annual record of the number of Canadian lynx trapped in the MacKenzie river district

from 1821 to 1934. This time series has traditionally served as an example of the need for

nonlinear and nonparametric time series models. A first analysis of the data with an AR

model was attempted by Moran [85], with later overviews and analyses by Tong [113] and

Campbell and Walker [17]. However, the appropriateness of the AR model and its variations

were disputed early on, so this data set quickly became a testing ground for new time

series models and estimation techniques and has achieved benchmark status. Tong [114]

provides a detailed exploratory and qualitative analysis and applies different TAR, RCAR

and bilinear models. More recently, Cai, Fan and Yao [16] used LLR for this data set,

whereas Lin and Pourahmadi [72] reviewed various nonparametric estimation techniques
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from regression applied to it. We work with the base 10 logarithm of the data in order to

stabilize the variance; the plot of the resulting series is shown in Fig. 2.1. As suggested in

the aforementioned literature, we use a second order FAR model with functional coefficients

depending on the lag-two series, i.e. X
(1)
t = Xt−1, X

(2)
t = Xt−2 and U

(1)
t = U

(2)
t = Xt−2.

The dynamics of the series are described by

Xt = f1(Xt−2)Xt−1 + f2(Xt−2)Xt−2 + εt (2.30)

We apply our estimation procedure, assuming the two functional coefficients f1, f2 follow

independent GP priors with constant mean functions and squared exponential covariance

kernels. We specify the prior as described in section 2.6 and we end up with hyperparam-

eters σ and {µi, hi}i=1,2 which are chosen by maximizing the marginal likelihood. We use

a simple gradient descent algorithm with initial values derived from the AR model. The

selected hyperparameters are given in Table 2.1, and the resulting posterior estimates of

the functional coefficients are presented in Fig. 2.2, together with pointwise 95% posterior

confidence intervals. As we can see, the fitted model suggests that f1 is almost constant

and f2 becomes more negative as Xt−2 increases.

Table 2.1: The hyperparameters that maximize the marginal likelihood of the Canadian
lynx series.

f1 f2

σ 0.2091714 µ1 1.3747400 µ2 -0.3486145
h1 2.535278 h2 0.736689

Induced ν1 0.07078407 ν2 0.07099573

` = 9.258848

For comparison, we fit the model with the two alternative prior specifications we discussed

in the previous section, i.e. we treat (ν1, ν2) as a free parameters or treat τ 2 as a free

parameter. The results for the first case are shown in Fig. 2.3 and for the second case in
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Figure 2.1: Plot of the logarithm of the Canadian lynx time series.
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Figure 2.2: Plots of GP estimated functional coefficients for (a) f1 and (b) f2 for the Cana-
dian lynx series (the marks at the bottom indicate the locations of the observed arguments).

Fig. 2.4. We also provide the values of the hyperparameters that maximize the marginal

log-likelihood in Table 2.2 and Table 2.3 respectively. We note that both specifications

resulted in a constant first functional coefficient. In the case where ν1, ν2 are free, we see
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that the uncertainty for the first coefficient is almost zero. The characteristic lengthscale

h1 is high but having ν1 so small makes it irrelevant; the posterior is practically equal to

the prior (which is constant) independently of the value of h1. The posterior for the second

functional coefficient has similar shape and slightly smaller variance than the other two

methods. In the case where τ is a free parameter we get almost the same results as our

suggested method, the most striking difference being the huge smoothing parameter h1.

Our proposed specification’s estimate of f1 is also very smooth, and in Chapter 5 we look

at procedures for deciding whether a function should be treated as constant or not. Notice

also that the optimal value of τ is close to that of σ so the induced prior uncertainties

are similar, and those for f2 are also comparable to the freely selected ν2. In general, the

posterior means of the functional coefficients from all three specifications are quite close, so

there are not dramatic changes in fit. The specifications are close in terms of marginal like-

lihood as well, even though the ones with more parameters always achieve higher likelihoods.
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Figure 2.3: Plots of GP estimated functional coefficients for (a) f1 and (b) f2 for the
Canadian lynx series, with ν1, ν2 treated as free parameters.
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Table 2.2: The hyperparameters that maximize the marginal likelihood of the Canadian
lynx series, with ν1, ν2 treated as free parameters.

f1 f2

σ 0.2080146 µ1 1.3648734 µ2 -0.3393747
h1 174.8650339 h2 0.7949713
ν1 6.575×10−6 ν2 0.08858933

` = 10.12103
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Figure 2.4: Plots of GP estimated functional coefficients for (a) f1 and (b) f2 for the
Canadian lynx series, with τ treated as a free parameter.

Table 2.3: The hyperparameters that maximize the marginal likelihood of the Canadian
lynx series, with τ treated as a free parameter.

f1 f2

σ 0.2084579 µ1 1.365773 µ2 -0.341352
τ 0.2460876 h1 2.121209×105 h2 0.7860304

Induced ν1 0.08327662 ν2 0.08352563

` = 9.268973

We also apply nonparametric estimation for the FAR model in (2.30) using LLR and splines,

as well as a parametric TAR model. For the LLR procedure we follow Cai, Fan and Yao [16]

which include an analysis of the lynx data in their paper and for the splines method, we
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follow the procedure proposed in Huang and Shen [60], using the same number of knots for

each function. The estimated functional coefficients for the two nonparametric methods are

presented in Fig. 2.5, superimposed with our posterior mean functions for comparison. The

least squares estimated second order TAR model is copied from Tong [114] (p. 377)

Xt =







0.59 + 1.25Xt−1 − 0.42Xt−2 + εt, if Xt−2 ≤ 3.25

2.23 + 1.52Xt−1 − 1.24Xt−2 + εt, if Xt−2 > 3.25
(2.31)

The comparative plot of the estimated functional coefficients shows that our method’s es-

timates are a lot smoother. It is important to mention here the flexibility of our method

compared to the TAR and the LLR estimation methods. We can allow different degrees of

smoothing for different functions, and this is why we estimated f1 to be almost constant.

For the TAR model and the LLR method, in order to estimate a constant autoregressive

coefficient we would have to use profile least squares. For the spline method this can be

avoided, but we would still have to treat the number of knots for each function separately

and introduce a constant basis function. Notice also that for both LLR and spline methods

the estimates of the coefficient functions f1 and f2 have a lot more curvature and that

they look like flipped versions of each other, which implies that the estimates are highly

correlated.

We next look at the fitted values from the four models, which are plotted in Fig 2.6 and

they are all practically indistinguishable. We also look at the predictive performance of

these models. We refit the models to the first 102 values from the series and try to predict

the remaining 12. We employ two prediction schemes, in the first we do one-step-ahead

prediction for the next observation, where we use all previous data as they come along. In

the second, we do multi-step-ahead predictions for all 12 future values by iteratively apply-

ing one-step-ahead predictions and treating the predicted values as the real data. For our
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Figure 2.5: Plots of nonparametric estimates of functional coefficients (a) f1 and (b) f2 for
the Canadian lynx data using GP, LLR and splines.

method this means we disregard parameter uncertainty, and we did this in order to make

the results comparable. For all models, the parameters are chosen based on the first 102

data. The one-step-ahead predictions are shown in Fig. 2.7 and the multi-step-ahead pre-

dictions are shown in Fig. 2.8. The one-step-ahead predictions are very close for all models

but this is not surprising, since they all have almost identical fitted values. However, our

modeling procedure seems to give improved multi-step-ahead predictions, which follow the

true process more closely, with the TAR model coming second.

Based on this last observation, we also perform a graphical test of the dynamics of each

fit. We look at the deterministic component of eqn. (2.30) under the different estimates

for f1, f2, also referred to as the deterministic skeleton of the series. The dynamics of this

component play an important role in the dynamics of the resulting series, see e.g. Meyn and

Tweedie [84]. We can view the deterministic component for the lynx data as a second order

nonlinear difference equation, whose behavior we can study in a 2-dimensional phase space.
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Figure 2.6: Fitted values from all four models applied to the Canadian lynx data, dots
represent true values.
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Figure 2.7: One-step-ahead predictions from all three models applied to the Canadian lynx
data, dots represent true values.

Fig. 2.9 shows the phase space plot of the data, i.e. the scatter plot of Xt versus Xt−1. It

is obvious from the plot, and a well documented fact, that the Canadian lynx data have

an approximate limit cycle, with a period of around 9.5 years (see Tong [114], p. 375). We
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Figure 2.8: Multi-step-ahead predictions from all three models applied to the Canadian
lynx data, dots represent true values.

present similar phase space plots for the dynamics of each fit in Fig. 2.10. The initial value

of the system, indicated by a cross, correspond to the point (2.033,1.903), the 100th and 99th

observation in the series. Although in general the evolution of the system depends on the

initial values, we have tried a range of different values and got the same long term behavior.

As we can see, only our method and TAR give sustained cyclic behavior, whereas LLR and

splines converge to a stable point of around (3.1,3.1). Even though the function estimates of

LLR and splines have a lot more curvature, the fitted model dynamics did not capture the

qualitative behavior of the series. We believe this happens because the coefficient functions

have reflected shapes and opposite signs and the arguments are correlated, so the effects of

the nonlinearity of each term cancel out. The important message from this example is that

we do not need to allow too much flexibility in the coefficient functions in order to capture

the characteristics of the series. In dynamical settings, even small nonlinearities can lead to

a very wide spectrum of behaviors and the popularity and practical success of TAR models

can attest to that. Our method also tends to produce simple models because it penalizes

each function’s variability separately. In Chapter 5 we discuss model selection procedures
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which are well suited for parsimony.
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Figure 2.9: Phase space plot of the Canadian lynx data.

2.7 Comments

We now make some general comments on our proposed approach; we begin by putting our

Bayesian model in context with respect to the literature. The use of GPs for nonparametric

regression dates back to the seminal paper of O’Hagan [88], although it is closely related

to earlier methods from spatial statistics, e.g. see Cressie [25]. Incidentally, O’Hagan looks

at the varying coefficient model, which is exactly our FAR model for independent data. He

provides the relevant posterior formulas, but apart from similarities in the general setting

our treatment is very different from his. First of all, O’Hagan uses the same argument for

all functional coefficients, so that their prior covariance matrix has a Kronecker product

form and they can be correlated a priori. We purposely allow different arguments for each

function in order to control their smoothness individually. Moreover, O’Hagan assumes

full knowledge of the prior and does not discuss its specification. Finally, we also differ in

the practical and theoretical issues that we address in subsequent chapters, and which are
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Figure 2.10: Phase space plots for the dynamics of the FAR model (2.30), fitted to the
Canadian lynx data using (a) GP, (b) LLR, (c) splines and (d) TAR.

pertinent to time series. Since the early work of O’Hagan, nonparametric GP methods have

witnessed tremendous development and there have lately appeared applications explicitly

for time series, see Girard et al. [45] and Wang et al. [119]. However, these are based on the

NLAR model; to our knowledge, we are the first to approach the nonparametric analysis of

the FAR model using GPs.

We also look at the relationship of our method to other models. Our treatment of the coef-

ficients as random variables resembles the RCAR model, but is in fact markedly different.

We assume the whole series is generated from a single random draw of coefficient functions,
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whereas in the RCAR model each observation is generated using a new i.i.d. coefficient

draw. Due to this important distinction we cannot apply available results for the RCAR

model, such as those for stability given by Bougerol and Picard [10]. A stronger connection

exists between our model and hidden Markov models (HMMs), since we can view the coef-

ficient evaluations as hidden variables, and the observations are conditionally independent

given the coefficients and the past. The main discrepancy is that each coefficient evaluation

in our model is correlated to all the previous ones, while in HMMs the hidden layer has

a finite dependence structure. As a result, our sequential inference requires conditioning

on all the past observations, whereas for finite memory HMMs we can apply faster meth-

ods, e.g. Kalman filtering. Nevertheless, we exploit this connection after we develop the

approximate inference method for our model, which fits into the HMM framework. On a

more practical level, we look at the posterior means of the coefficient functions in (2.16) as

point estimates. It is not difficult to see that the posterior mean of each fi is given as a

linear combination of squared exponential kernels {Ci(·, x(i)
t )}T

t=1 centered at the observed

arguments, plus a prior bias term given by the prior mean function µi. This relates to the

EXPAR model (1.7), which also uses squared exponentials to represent the coefficient func-

tions, but does so in a parametric way. Each coefficient involves only one exponential, and

the locations and shapes for each one are governed by independent parameters. The basic

consequence of this similarity between the two methods is that they always give bounded

estimates, which is important for the stability of the fitted model.

We move on to give some justification for our choices on the prior, which were motivated

by the general characteristics of FAR models and time series. First, we look at the use

of arbitrary constant prior means, which is a departure from the conventional use of zero

means. This choice is practically inconsequential for the region (in functional coefficient

input space) where the main body of the data lies, but it is significant for extrapolating
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the functions. By selecting the constant prior means by maximum marginal likelihood, we

introduce a bias toward a linear AR model which becomes stronger outside the observed

range of the functions. This is helpful in two ways, first it makes the coefficient functions

closer to constant, so that our model is more parsimonious. Second and most important,

it improves the behavior of predictions or simulations from our model. Basically, when

we iterate the FAR model dynamics to generate future paths we cannot control the points

at which we have to evaluate the coefficients, which can often lie close to or outside the

boundaries of their observed range. This renders the so called boundary behavior of the

estimators crucial for the accuracy and stability of the paths. By using our data dependent

prior means, we impose a linear AR structure over regions where we do not have enough

data, which is more informative than the zero mean alternative and still leads to relatively

stable paths.

Changing perspective, we now compare our method to the other nonparametric estimation

schemes that have appeared in the literature. As we pointed out before, local/kernel meth-

ods, in order to avoid backfitting, are restricted to the case where all functional coefficients

share the same argument and, consequently, the same smoothing parameter. Another com-

plication arises when we need to predict the coefficients at the boundary, especially when

using kernels with finite support. Often in such cases, the local linear system we need to

fit is ill-conditioned or even undefined when it does not contain enough data points, and

some correction is required. Turning to our method, it is well known that there is a strong

correspondence between GP regression and smoothing splines. In particular, Kimeldorf and

Wahba [67] show that a smoothing spline is the posterior mean of a GP regression prob-

lem with a special prior and, conversely, that the posterior mean of a GP regression is the

solution to a regularization (penalized least-squares) problem in an appropriate function

space. The former viewpoint has been applied for Bayesian spline estimation, see Ansley et
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al. [3], and for creating confidence bands around spline curve estimates, see Wahba [118].

Despite this correspondence, there are some substantial practical differences between the

two methods. In terms of estimation and prediction, computations for both methods scale

the same. In practice, smoothing splines are almost always employed with fewer number of

knots than observations, which makes them considerably faster; even so, our approximation

scheme, presented in Chapter 3, makes the methods comparable. However, for choosing

the smoothing parameters spline methods usually rely on CV and involve grid searches,

while for our method we can perform a gradient-based search. The approach of Huang and

Shen [60] for the FAR model, also known as regression splines, uses only the number of

knots to control the smoothness. This approach is a lot faster than regularized regression

since it only requires a grid search over the number of knots, which is usually low, but the

search still scales exponentially in the number of functions. In addition, the absence of

regularization can lead to unstable estimates at the boundary.

The most important difference between our GP method and splines, though, are with

respect to the shape of the estimated functions; and we demonstrate this using our previous

example. We fit a smoothing spline to each functional coefficient in model (2.30) for the

Canadian lynx data, where we allow different roughness penalties λ1, λ2 for each function.

We minimize the following objective function

min
f1,f2

{
∑

t

(

xt − xt−1f1(xt−2) − xt−2f2(xt−2)

)2

+

2∑

i=1

λi‖f ′′i ‖2
2

}

where the smoothing parameters λ1 = 0.261 and λ2 = 0.099 are selected by the ordered

multi-fold CV procedure suggested in Cai et al. [16]; the plots of the resulting estimates

are shown in Fig. 2.11. The two estimates are close to linear and have opposite slopes,

because cubic splines only penalize the second derivative of the function. Therefore, a linear

function can always be fit at no cost, even for high roughness penalties. Moreover, any type
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of splines, regression or smoothing, do linear extrapolation outside the observed range. This

means that virtually every function estimate will be unbounded, which affects the stability

of the fitted model. In contrast, our GP method, using the squared exponential kernel,

penalizes deviations form the mean level, so the coefficient estimates become constant with

more smoothing. From a modeling perspective, we claim that the behavior of GPs is more

attractive than that of splines because of the type of functions we want to estimate. Imagine

a term of the form X (i)fi(U
(i)) that we want to fit with regularized regression and with an

infinite roughness penalty under both splines and GP. In the former case, we would end up

with a term αX(i)U (i) whereas in the latter we would have a term αX (i), for some α ∈ R.

It seems more natural to assume that, in their smoothest form, the coefficient functions

are flat rather than linear in the argument, and this also makes interpretation a lot easier

because of the absence of interactions between the argument and the regressor, and the

similarity to a linear AR model. We believe splines lend themselves better for estimating

additive functions instead of coefficient functions, especially in our dynamic setting.
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Figure 2.11: Plots of smoothing spline estimated functional coefficients for (a) f1 and (b)
f2 for the Canadian lynx series.



Chapter 3

Approximation Methods

Gaussian process regression is computationally expensive, requiring O(n3) operations where

n is the number of observations. This significantly limits its applicability to relatively

small data sets and this has led to the development of more efficient approximate inference

methods. Different approximation schemes have been proposed in the literature in order

to cope with this problem for the nonparametric regression setting. Gibbs and McKay [44]

use iterative solutions to the linear system of equations involved in estimation which scale

as O(mn2), where m is the number of iterations. Although this offers an improvement,

the quadratic factor can still be prohibitive. A faster alternative is based on reduced rank

approximations of the prior covariance matrix of the functions. The idea is to approximate

the covariance matrix by C = WV W >, where W is an n×mmatrix and V is a nonsingular

m × m matrix, with m � n. This affords the use of the Woodbury-Sherman-Morrison

formula, also known as the matrix inversion lemma, for the inversion of the matrices used

in estimation. The formula states that

(Σ + C)−1 = (Σ + WV W>)−1 = Σ−1 −Σ−1W (V −1 + W>Σ−1W )−1W>Σ−1 (3.1)

50
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The cost of carrying out the computations in (3.1) scales as O(m2n), where m is also the

rank of C. This is a significant improvement that allows us to work with large numbers

of observations. In the following section we give a review of the different reduced rank

approximations as they have appeared for nonparametric regression. Next, we extend the

method to our FAR setting and describe its practical implementation. We give an example

of approximate inference and compare it to exact inference. Finally, we describe how the

extension can be used for treating multivariate FAR and state-space models.

3.1 Review of Reduced Rank Approximations

There are three common ways in the literature to approximate the covariance matrix in

a reduced rank form. An overview can be found in Rasmussen and Williams [96] and in

Quiñonero-Candela and Rasmussen [94]. The first is the Nyström method, which relies on

an approximate eigenvalue decomposition of the covariance kernel. The second is the subset

of regressors (SR) method which, in effect, represents the functions as a linear combination

of kernels centered at a subset of the observations. This is an analogue of smoothing splines

with a smaller number of knots than number of data points. The third is the projected

process (PP) method, which performs estimation by conditioning (projecting) the Gaussian

process on a subset of the data. All three methods lead to reduced rank approximations

and they are closely related.

3.1.1 Nyström Method

The Nyström method, which was introduced by Williams and Seeger [122], is based on the

numerical eigendecomposition of a kernel k(·, ·). The eigenvalues λi and eigenfunctions φi(·)

of k with respect to the probability measure P satisfy λiφi(x
′) =

∫

x k(x
′, x)φi(x)dP (x) (see

also Def. A.5 in the Appendix). Assuming we have a sample {x1, . . . , xn} from P , we can
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perform the integration numerically, to get

λiφi(x
′) =

∫

x
k(x′, x)φi(x)dP (x) ≈ 1

n

n∑

k=1

k(x′, xk)φi(xk) (3.2)

If we substitute the sampled x’s in the place of x′ we get the system of equations

λiφi(xj) =
1

n

n∑

k=1

k(xj , xk)φi(xk) , ∀i, j = 1, . . . , n

which translates to the matrix eigenproblem λiφi = Kφi for i = 1, . . . , n, where K =

[{k(xi, xj)}n
i,j=1] and φ>

i = [φi(x1), . . . , φi(xn)]. Based on this, we look at the eigendecom-

position λ?
i ui = Kui , i = 1, . . . , n of the matrix K, where λ?

i is the ith eigenvalue and

ui is it’s corresponding normalized eigenvector. A straightforward estimator of the eigen-

values is λ̃i = λ?
i /n, and the elements of ui are estimates of the eigenfunction evaluations

at the observed x’s, that is φ̃i(xj) =
√
n(ui)j . The

√
n factor is a result of the different

normalization between the eigenvectors and the eigenfunctions.

The Nyström method uses equation (3.2) to extend the eigenfunction approximation to

the entire range of x, giving φ̃i(x) =
√

n
λ?

i
k(x)>ui, where k(·) = [k(·, x1), . . . , k(·, xn)]>.

The index i runs only up to n, thus we can only approximate the first n eigenvalues and

eigenvectors of the kernel. The kernel k is approximated by

k̃(x, x′) =

n∑

i=1

λ̃iφ̃i(x)φ̃i(x
′) =

n∑

i=1

1

λ?
i

k(x)>uik(x′)>ui

= k(x)>
(

n∑

i=1

1

λ?
i

uiu
>
i

)

k(x′) = k(x)>K−1k(x′) (3.3)

This does not yet provide any computational improvement since the inversion of K requires

O(n3) calculations. The main idea behind the Nyström method is to base the approximation

on a small subset of m � n data points. Without loss of generality, let this subset be
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{x1, . . . , xm} and also suppose k(·, ·) is a covariance kernel. We want to approximate the

covariance matrix K, which can be written in partitioned form as

K =






Km,m Km,n−m

Kn−m,m Kn−m,n−m






where Km,m = [{k(xi, xj)}m
i,j=1], Kn−m,n−m = [{k(xi, xj)}n

i,j=m+1], and Km,n−m = K>
n−m,m =

[{k(xi, xj)}m,n
i=1,j=m+1]. The Nyström approximation of K, based on the eigendecomposition

of Km,m, becomes

K̃ = Kn,mK−1
m,mKm,n (3.4)

where Km,n = K>
n,m = [Km,m,Km,n−m].

As an example of how the approximation is applied, consider a simple nonparametric GP

regression, where we observe data points{(yi, xi)}n
i=1 coming from the model

yi|f, xi ∼ N (f(xi), σ
2)

f ∼ GP(0, k)

The covariance function of f is given by the kernel k(·, ·) which we approximate using

the Nyström method. The resulting formulas for the posterior mean and variance of f ,

evaluated at an arbitrary point x′, are

ENys[f(x′)|x,y] = k(x′)>(K̃ + Σ)−1y (3.5)

VarNys[f(x′)|x,y] = k(x′, x′) − k(x′)>(K̃ + Σ)−1k(x) (3.6)

with the notation carrying over from our previous exposition and that of Chapter 2 in an
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obvious way. Moreover, The marginal likelihood is approximated by

`Nys(y|x) = −1

2

(

log |K̃ + Σ| + y>(K̃ + Σ)−1y + n log(2π)
)

(3.7)

The matrix K̃ is in reduced rank form and the computations for estimation, i.e. inversion

and determinant of (K̃ + Σ)−1, scale as O(m2n). For the latter operation, we use the

analogue of the matrix inversion lemma for determinants, which states that |Σ+WV W >| =

|Σ| |V | |V −1 + W>Σ−1W |. For comparison, we also give the exact formulas for GP

regression.

E[f(x′)|x,y] = k(x′)>(K + Σ)−1y (3.8)

Var[f(x′)|x,y] = k(x′, x′) − k(x′)>(K + Σ)−1k(x′) (3.9)

`(y|x) = −1

2

(

log |K + Σ| + y>(K + Σ)−1y + n log(2π)
)

(3.10)

Before we present the subset of regressors method, we take a closer look at the previous non-

parametric regression model. The posterior mean of f , as given in (3.8), can be represented

as a linear combination of n kernels centered at the observed x’s

E[f(x′)|x,y] =

n∑

i=1

αik(x
′, xi) = α>k(·) (3.11)

where α = (K+Σ)−1y. Based on this observation in a similar regularized regression setting,

Silverman [107] proposed a finite dimensional Bayesian model that gives the same posterior

mean. In particular, we can view the function f as a linear combination f(·) = α>k(·) of

fixed kernels centered at the observed data, with random coefficients α. Putting the specific

Gaussian prior α ∼ N (0,K−1) on the coefficients, their posterior distribution becomes

α|x,y ∼ N
(
(K + Σ)−1y, (K + KΣ−1K)−1

)
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As a result, the posterior mean of f for this finite dimensional model is exactly the one

in (3.11). It is important to note that this finite dimensional Bayes model is not equivalent

to GP regression, the difference lies in the posterior covariances. Specifically, the posterior

variance of f at a point x′ is k(x′)>(K +KΣ−1K)−1k(x′) for the finite dimensional Bayes

model. Thus, if the point x′ is far from the observed xi’s (so that the vector k(x′) is close

to zero) the posterior variance will tend to zero, whereas for GP it will always be positive,

going to k(x′, x′).

3.1.2 Subset of Regressors

As the name suggests, the SR method uses only a subset of the data on which to base

the representation. Again, we assume a subset {x1, . . . , xm} of size m, so that f can be

represented as

f(·) =

m∑

i=1

αik(·, xi) = α>
mkm(·) (3.12)

and we put the prior αm ∼ N (0,K−1
m,m) on the coefficients. The formulas for the posterior

mean and variance using the SR method are

ESR[f(x′)|x,y] = km(x′)>(Km,m + Km,nΣ
−1Kn,m)−1Km,nΣ

−1y (3.13)

VarSR[f(x′)|x,y] = km(x′)>(Km,m + Km,nΣ
−1Kn,m)−1km(x′) (3.14)

and the marginal likelihood is equal to that of the Nyström method. To verify that the

SR method is a reduced rank approximation, we look at the prior covariance matrix of the

vector f = [f(x1), . . . , f(xn)]> of function evaluations at the observed data points, which

is simply Kn,mK−1
mmKm,n. This is exactly the matrix K̃ from equation (3.4), and in fact

there is a close relationship between the Nyström and the SR method, they both reach the
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same reduced rank approximation through different avenues. The main difference is that

the SR method is formulated as a probabilistic model, so it gives consistent results, whereas

the Nyström method only substitutes an approximation K̃ for the covariance matrix K

wherever it appears in the exact GP regression formulas. The latter approach is inconsistent

because some posterior variances can be negative. However, Rasmussen and Williams [96]

show that if we systematically substitute the Nyström approximation (3.3) for the kernel k

in the exact formulas (3.8-3.9), we get the SR method. For all other practical considerations,

the two methods behave similarly.

3.1.3 Projected Process

The SR method has the disadvantage that, being a finite dimensional model, the posterior

variance of predictions can go to zero; the projected process approximation of Seeger et

al. [103] can amend this. Again, the method is based on a subset of the data {x1, . . . , xm}.

Consider a vector of evaluations at this set fm = [f(x1), . . . , f(xm)]>, and let fn−m be the

rest of the evaluations. From the GP prior, we know that E[f n−m|f ] = Kn−m,mK−1
m,mfm.

The idea behind the method is to replace the data likelihood L(y|f) = N (f ,Σ), which

depends on the entire f , with the following approximation

L̃(y|f) = N (E[f |fm],Σ) = N (Kn,mK−1
m,mfm, σ

2I) (3.15)

which depends only on fm. The name of the method comes from the fact that we project

the entire process on fm. Seeger [101] gives a theoretical justification behind this approx-

imation in terms of the Kullback-Leibler divergence of the posterior distributions p(f |y)

and p̃(f |y) of f under the exact and the approximate method, respectively. In particular,

he shows that p̃(f |y) minimizes DKL

(
q(f |y)‖p(f |y)

)
over all distributions q of the form

q(f |y) ∝ q1(y|fm)q2(f). In our case, q2(f) is the GP prior and q1(y|fm) is the likelihood

approximation in (3.15). The resulting posterior mean and marginal likelihood is exactly
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the same as that of SR, but the variance now becomes

VarPP [f(x′)|x,y] = k(x′, x′) − km(x′)>K−1
m,mkm(x′)

+ km(x′)>(Km,m + Km,nΣ
−1Kn,m)−1km(x′) (3.16)

This means that even if x′ is far form the range of the basis points, the posterior variance

of f(x′) will still be positive.

3.2 Reduced Rank Approximations for FAR Model

In this section we present our adaptation of the PP reduced rank approximation to the

general FAR model Yt = X
(1)
t f1(U

(1)
t ) + . . . + X

(p)
t fp(U

(p)
t ) + εt. Suppose that we have T

observations from this time series model (instead of n for regression) , where each function

has a GP prior with mean function µi(·) and covariance kernel Ci(·, ·), and let {B(i)
j }mi

j=1

be a collection of points in the space of U (i), which need not be observed values of U (i).

For example, if U (i) is one dimensional they can be an equally spaced or quantile sequence

in the range of U (i). These are the points on which we base the mth
i order reduced rank

approximation for each fi, and they can be thought of as the knots in smoothing splines.

We define the following

f>
B,i =

[

fi(B
(i)
1 ), fi(B

(i)
2 ), . . . , fi(B

(i)
mi

)
]

, f>
B =

[
f>

B,1,f
>
B,2, . . . ,f

>
B,p

]

µ>
B,i =

[

µi(B
(i)
1 ), µi(B

(i)
2 ), . . . , µi(B

(i)
mi

)
]

, µ>
B =

[

µ>
B,1,µ

>
B,2, . . . ,µ

>
B,p

]

CB,i =

[{

Ci

(

B
(i)
j , B

(i)
k

)}mi

j,k=1

]

, CU,i =

[{

Ci

(

U
(i)
t , B

(i)
j

)}T,mi

t=1,j=1

]
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CB =












CB,1 0 . . . 0

0 CB,2 . . . 0

...
...

. . .
...

0 0 . . . CB,p












, CU =












CU,1 0 . . . 0

0 CU,2 . . . 0

...
...

. . .
...

0 0 . . . CU,p












The vector fB represents the functional coefficient evaluations at the basis set and µB,CB

are its corresponding prior mean and covariance matrix. The matrix CU provides the

covariance between the function evaluations at the basis points and the observed arguments.

After standard calculations, the posterior mean and covariance of f B are

E[fB |y] = µB + CB(CB + C>
UXΣ−1X>CU )−1C>

UXΣ−1(y − X>µ) (3.17)

Var[fB |y] = CB(CB + C>
UXΣ−1X>CU )−1CB (3.18)

and the logarithm of the marginal likelihood of the data is

`(y) = −1

2

[

T log(2π) + log(|Σ + X>CUC−1
B C>

UX|)+

+(y − X>µ)>
(

Σ + X>CUC−1
B C>

UX
)−1

(y − X>µ)

]

= −1

2

[

T log(2π|Σ|) + log(|I + C>
UXΣ−1X>CUC−1

B |)+

+r>
(

Σ− X>CU (CB + C>
UXΣ−1X>CU )−1C>

UX
)

r
]

(3.19)

where r = Σ−1(y − X>µ). For predictions, we want to find the posterior distribution of

a vector fN of function evaluations at arbitrary points {N (i)
k }ni

k=1 for each fi. Similarly, we

define

f>
N,i =

[

fi(N
(i)
1 ), fi(N

(i)
2 ), . . . , fi(N

(i)
ni

)
]

, f>
N =

[
f>

N,1,f
>
N,2, . . . ,f

>
N,p

]

µ>
N,i =

[

µi(N
(i)
1 ), µi(N

(i)
2 ), . . . , µi(N

(i)
ni

)
]

, µ>
N =

[

µ>
N,1,µ

>
N,2, . . . ,µ

>
Np

]
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CNN,i =

[{

Ci

(

N
(i)
j , N

(i)
k

)}ni

j,k=1

]

, CN,i =

[{

Ci

(

N
(i)
k , B

(i)
j

)}ni,mi

k=1,j=1

]

CNN =












CNN,1 0 . . . 0

0 CNN,2 . . . 0

...
...

. . .
...

0 0 . . . CNN,p












, CN =












CN,1 0 . . . 0

0 CN,2 . . . 0

...
...

. . .
...

0 0 . . . CN,p












The posterior distribution of fN is induced from (3.17-3.18) and is normal with mean and

variance given by

E[fN |y] = µN + CN (CB + C>
UXΣ−1X>CU )−1C>

UXΣ−1(y − X>µ) (3.20)

Var[fN |y] = CNN − CNC−1
B C>

N + CN (CB + C>
UXΣ−1X>CU )−1C>

N (3.21)

In terms of computational efficiency, our PP approximation scheme scales as O
(

T (
∑p

i=1mi)
2
)

for the posterior means and variances, and the marginal likelihood (we only look at vari-

ances, because for covariances we would have to compute the entire T×T covariance matrix).

In order to carry out these operations, we only need to invert matrices of the dimension

of CB, which scale as O
(

(
∑p

i=1mi)
3
)

, and all the relevant matrix multiplications can be

performed in O
(

T (
∑p

i=1mi)
2
)

computations by using the special structure of Σ and X,

and following a convenient ordering for multiplication. Thus, the computations in this case

depend also on the order/number of regressors p of the FAR model, unlike the exact in-

ference where they only depend on the number of observations. For calculating the score

functions in addition, the procedure scales as O
(

pT (
∑p

i=1mi)
2
)

because we have 2p + 1

hyperparameters; the formulas for the score functions follow readily from eqn. (3.19) upon

differentiation. To summarize, in a realistic setting where we estimate the hyperparame-
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ters and use the same number of bases m for each function, the whole procedure scales

as O
(

Tp3m2
)

. This can still be high in relation to the number of terms p, but later we

look at methods for substituting varying coefficients with constants (in effect replacing m

basis points with only one), which offers further improvements. Finally, we discuss online

estimation for the approximation method, which essentially reduces to updating the in-

verse of A = (CB +C>
UXΣ−1X>CU ). To isolate the contribution of each observation, we

rewrite the last matrix as A = CB +
∑T

t=1 wtw
>
t , where wt is the tth row of the matrix

W = X>CUΣ−1/2. Each row of W involves only variables associated with the correspond-

ing observation and the basis points. Now, assuming we get a new observation with a new

wT+1, we need the inverse of A′−1 = (CB +
∑T+1

t=1 wtw
>
t )−1 = (A+wT+1w

>
T+1)

−1. Given

knowledge of A−1, we can use the matrix inversion lemma to get

A′−1 = A−1 − A−1wT+1(IT + w>
T+1A

−1wT+1)
−1w>

T+1A
−1 (3.22)

which can be computed in quadratic time in the dimension of CB . In effect, each new

observation adds a rank one perturbation to the matrix A, and sequential estimation scales

the same as batch estimation.

3.3 Implementation

Before we discuss practical choices in the implementation of our reduced rank approxima-

tion, we point out some important qualitative differences between the regression setting

and our FAR model. First, in GP regression the input space is typically high dimensional,

contrary to the FAR model where each argument U
(i)
t of fi will usually be one dimensional.

This is a consequences of our intension to avoid the curse of dimensionality. Moreover, the

behavior of the functions we try to estimate is fundamentally different. In GP regression,

there is no limitation on the shape of the regression function f . In the FAR model on



CHAPTER 3. APPROXIMATION METHODS 61

the other hand, the functions fi we try to estimate are coefficients to be multiplied with

lagged values of the process, or other exogenous time series, in a dynamic setting, so even

relatively simple functions fi can represent a large spectrum of behaviors. Moreover, in the

Markov case we expect the functions to be small in absolute value, usually less than one,

for the process not to be explosive. Therefore, and for reasons of parsimony, we believe that

the functional coefficients should not be very variable, and we should be able to even allow

them to be constant.

We now translate these observations in the context of the practical implementation of re-

duced rank approximations to the FAR model. For GP regression, the covariance matrix K

usually has high rank, so the order of the approximation and the composition of the basis

set play an important role. For this reason greedy algorithms are used to decide which

and how many basis points should be used, e.g. see Lawrence et al. [71] and Seeger et

al. [102]. For the FAR model, however, the rank of the covariance matrix of each function is

typically much smaller than the number of observations, because the functions are smooth

and low dimensional. This allows us to make ad hoc choices which do not significantly

compromise the accuracy of the approximation. Practically, we only need a small rank

for each function, in the order of tens, with the basis set for each function fi being an

equally or quantile spaced sequence in the observed range of its argument U (i). We gener-

ally use equal spacing, except when the observed arguments take extreme values, in which

case it could be preferable to use quantile-based spacing. We have found that for applica-

tions where the functional coefficients are one dimensional this approach behaves quite well.

Another important aspect of the implementation of our reduced rank approximation is the

invertibility of the basis prior covariance matrix CB. This is a block diagonal matrix, so its

invertibility is determined by that of its diagonal blocks CB,i, i.e. the basis prior covariance
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matrices for each functional coefficient fi. For practical applications, the matrices

CB,i =
[

{Ci(Bj, Bk)}mi

j,k=1

]

=

[

ν2
i

{

exp

(

−‖Bj −Bk‖2

h2
i

)}mi

j,k=1

]

end up being computationally singular even for moderate values of the characteristic length-

scale hi and small numbers of basis points mi. This singularity does not pose a problem for

the exact method, since we need the inverse of (X>CX + Σ)−1 which is stable because of

the added diagonal matrix Σ. But the formulas for our reduced rank approximation necessi-

tate the inversion of (CB +C>
UXΣ−1X>CU ), which relies on C−1

B for applying the matrix

inversion lemma. It might seem that we could use a QR decomposition on CB = QR and

apply the lemma in the opposite direction

(CB + C>
UXΣ−1X>CU )−1 = (QR + F )−1 = F−1 − F−1Q(I + RF−1Q)−1RF−1

where F = C>
UXΣ−1X>CU . Unfortunately, for practical applications the matrix F is al-

most always singular and this approach does not work in general. One could argue in favor

of reducing the number of basis points for fi in order to make C i invertible. This approach

would be valid if we knew the values of the hyperparameters, especially hi, beforehand, so

that we could adjust the number of bases according to the smoothness of the function. But

for any realistic application the hyperparameters need to be selected by maximizing the

marginal likelihood and this requires evaluations at arbitrary points in the hyperparameter

space. Neither can we adjust the number of bases on the fly, as we move through the hyper-

parameter space, because we would be essentially comparing different model specifications,

sacrificing the consistency of our method and introducing discontinuities in the likelihood

(also prohibiting a gradient-based search). Therefore, we cannot bypass the need to ensure

that CB is invertible for any number of basis points and hyperparameter values.
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The way we choose to address this issue is by slightly altering the covariance function in

order to always give us an invertible CB . We propose two different schemes, the first one

uses the covariance function

C ′(x, y) = ν2

[

exp

(

−‖x− y‖2

h2

)

+ εδ(x − y)

]

where ε is some small positive number and δ(·) is the Kronecker delta function. What we

actually achieve by this is to add a small diagonal term to CB in order to stabilize the

matrix; the new basis covariance matrix being C ′
B = CB + εI. This method can be quite

rough, because the perturbation only appears on C ′
B and not on C ′

U (unless there are exact

ties between the basis set and the observed arguments). A smoother perturbation results

from the covariance function

C ′(x, y) = ν2

[

exp

(

−‖x− y‖2

h2

)

+ ε exp

(

−‖x− y‖2

h?2

)]

where ε is as before, and h? is a fixed bandwidth, specified from the basis set in order to

always give a non singular CB . For practical applications, we propose setting h? equal to

the minimum distance between the basis points. This perturbation is smoother, in the sense

that it also affects the rectangular matrix C ′
U .

We now give a heuristic discussion about the magnitude of ε, the parameter in the covariance

function perturbation. Assume that we want to approximate the covariance matrix of a

function, and we have decided on the number m of basis points. We want to make sure

that the covariance matrix of the basis is numerically stable for inversion, and for this

reason we can just look at a worst case scenario which happens when the bandwidth is

infinite (i.e. the function is constant). The parameter ν2 is irrelevant because it divides

the entire matrix, so without loss of generality we can assume it is equal to one and that
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we need to invert CB = 1, an m × m matrix of ones. Using the first (rough) type of

perturbation, we have C ′
B = 1 + εI, which is theoretically invertible for any ε > 0. In

practice, the feasibility and numerical stability of matrix inversion is related to its condition

number, which is defined as the ratio of its greatest over its smallest eigenvalue. The

matrix 1 + εI has maximum eigenvalue λmax = m + ε and minimum eigenvalue λmin =

ε, with multiplicity m − 1. Thus, its condition number is approximately equal to m/ε.

Most numerical computation packages can handle reasonably sized matrices with condition

numbers up to 1015 so this can give us an approximate lower bound on ε, since we need

ε ≥ m10−15. As we mentioned before m is usually in the order of tens, so we have found

that a good practical choice of ε is around 10−5. This choice of ε also works for the smooth

perturbation because the eigenvalues of the smooth and rough perturbation are relatively

close, at least for h∗ equal to the minimum distance between bases points. So far, we

have only looked at the invertibility of each function’s basis covariance matrix, but in fact

we need the inverse (CB + C>
UXΣ−1X>CU )−1 which also depends on the data. We can

still justify our previous choice of ε by noticing that we can rewrite the above matrix as

C−1
B − C−1

B F (I + C−1
B F )−1C−1

B , with F defined as before. This expression involves only

C−1
B and the inversion of the matrix (I + C−1

B F ) is generally stable.

3.4 Example

In this section we use the PP approximation and present results from applying it on the

Canadian lynx data. We consider both the smooth and rough perurbations, and select the

hyperparameters by maximizing the corresponding approximate marginal likelihood. The

results for the exact method and the rough and smooth PP approximations using 10 equally

spaced bases for each coefficient and ε = 10−5 are shown in Fig. 3.1, the corresponding op-

timal hyperparameters are given in Table 3.1. As we can see, both the hyperparameters

and the posteriors are indistinguishable; the functional coefficients in this example are quite
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smooth so, as we would expect, the approximation works very well. In order to find dis-

crepancies between the fits we have to use fewer bases, so we try our method with 5 and 3

bases for each function and the results are shown in Fig. 3.2 and Fig. 3.3 respectively. Even

with 5 bases, the exact and approximate estimation give very similar results and it requires

reducing the number of bases down to three to see significant differences in the shape of

the posterior functions. In the latter case we can clearly see how the first coefficient is a

mixture of three Gaussian curves. In general, for relatively smooth one-dimensional coeffi-

cient functions we will not require more than 10 bases in our approximation to adequately

capture their shape and this is why we believe our approximation will work well in prac-

tice. In terms of the comparison between the rough and smooth approximation, they both

gave identical results in this example but we have found that in certain cases the smooth

approximation behaves better, so it is the one we will adopt throughout.
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Figure 3.1: Plot of posterior distributions of functional coefficients (a) f1 and (b) f2 for the
Canadian lynx data using the exact method and the rough and smooth PP approximations
with 10 bases.
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Table 3.1: Selected hyperparameters by maximizing the marginal likelihood of the Canadian
lynx data for the exact method and the rough and smooth PP approximations with 10 bases.

Exact Approximate
Rough Smooth

σ 0.20917 0.20920 0.20920
µ1 1.37474 1.37548 1.37549
µ2 -0.34861 -0.34871 -0.34873
h1 2.53528 2.53522 2.53490
h2 0.73669 0.74166 0.74177

max ` 9.25885 9.26058 9.2606
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Figure 3.2: Plot of posterior distributions of functional coefficients (a) f1 and (b) f2 for the
Canadian lynx data using the exact method and the rough and smooth PP approximations
with 5 bases.

We also demonstrate the main difference between the PP and the SR (and by extension

the Nystr om) approximation methods. We use both of them to fit the Canadian lynx data

with the same 10 equally spaced basis points and the smooth covariance perturbation. As

we have pointed out, the marginal likelihoods and posterior means are identical for the two

methods, their only difference being their posterior covariance. In Fig. 3.4 we present a plot

of the posterior distribution of the second functional coefficient under both methods. We
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Figure 3.3: Plot of posterior distributions of functional coefficients (a) f1 and (b) f2 for the
Canadian lynx data using the exact method and the rough and smooth PP approximations
with 3 bases.

have purposely extended the range of the argument beyond the observed range in order to

capture their discrepancy. The variance of the SR method decays quickly to zero because we

essentially represent the function as a (random) combination of Gaussian kernels, centered

within the observed range. Any evaluation of these kernels outside the range will approach

zero at an exponential rate, and this leads to the unfortunate interpretation that we are

more sure about the value of the function outside the range where we observe data. On the

other hand, the PP method preserves the local character of the estimation; the posterior

variance of an evaluation outside the observed range approaches the prior variance. This

is the reason why we chose the PP method, especially because when we want to simulate

path from the process, taking estimation uncertainty into account, we might have to make

evaluations outside the observed range of the functional coefficients.
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Figure 3.4: Plot of posterior distribution of functional coefficient f2 for the Canadian lynx
data under the PP and SR approximations with 10 bases.

3.5 Extensions

We present two extensions of our methodology which are based on reduced rank approx-

imations. First, we look at multivariate FAR models, a natural nonlinear generalization

of the vector autoregressive (VAR) model. Our treatment of multivariate nonlinear time

series does not strictly necessitate approximate inference, but it is much more efficient if we

do so. Second, we look at state space (SS) models and how we can incorporate nonlinear

terms in the dynamics of the latent variables. This class of models is a generalization of the

FAR model, but also encompasses other important sub-cases, such as factor models. Our

treatment of SS models relies on reduced rank approximations.

3.5.1 Multivariate Models

Many practical applications of time series analysis extend beyond the univariate setting,

with the aim of describing the interrelations across multiple series. In these cases, the VAR

model has been the most successful, flexible and easy to use model; a thorough exposition
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is given in Lütkepohl [78]. For a d−dimensional series {Y t}, the pth order VAR dynamics

are

Y t = µ + A1Y t−1 + . . .+ ApY t−p + εt

where µ is a d-dimensional mean vector, A1, . . . ,Ap are fixed d×d coefficient matrices, and

{εt} is a d-dimensional white noise sequence. It is straightforward to generalize the VAR

model to a multivariate FAR model, by allowing the coefficients to be functions of some

argument variable. The resulting specification is

Y t = X>
t F (U t) + εt (3.23)

where

X>
t =












X
(1,1)
t · · · X

(1,p1)
t 0 · · · 0 · · · 0 · · · 0

0 · · · 0 X
(2,1)
t · · · X

(2,p2)
t · · · 0 · · · 0

...
...

...
...

...
...

. . .
...

...
...

0 · · · 0 0 · · · 0 · · · X
(d,1)
t · · · X

(d,pd)
t












F (U t)
> =












f11t · · · f1p1t 0 · · · 0 · · · 0 · · · 0

0 · · · 0 f21t · · · f2p2t · · · 0 · · · 0

...
...

...
...

...
...

. . .
...

...
...

0 · · · 0 0 · · · 0 · · · fd1t · · · fdpdt












and fijt = fi,j(U
(i,j)
t ), with {X(i,j)

t }, {U (i,j)
t } being Ft−1 measurable variables, for any

i = 1, . . . , d and j = 1, . . . , pi. The specification in (3.23) allows each component Yit of

Y t = [Y1t, . . . , Ydt]
> to have pi of its own regressor variables {X (i,1), . . . , X(i,pi)} multiplied
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with pi of its own functional coefficients, with arguments {U (i,1), . . . , U (i,pi)}. As usual, the

regressor and argument variables can depend on lagged values of any component of Y t, or

they can be exogenous.

In terms of estimation, we use an independent GP prior for every function and work with

the resulting conditional likelihood. We do not provide formulas, since they are readily

extended from the univariate setting. However, there is a subtlety that arises from condi-

tioning; if the error covariance matrix Σε is diagonal we can equivalently fit a separate FAR

model for each coordinate. In this case, it does not matter for estimation if some compo-

nents of Y depend on the same regressor or argument variables. Of course, this argument

does not hold for multi-step-ahead predictions or simulations from the model. If, on the

other hand, Σε is full, we must treat the system in a unified way and our likelihood-based

method can account for the interactions between components. Note that the last is not true

for nonparametric estimation based on conditional least squares where each coordinate is

treated independently, unless the conditional errors are weighted by a fixed covariance ma-

trix. In terms of computation, estimation in d dimensions increases the burden by roughly

a factor of d3. This is exactly true for the exact method; for the approximate method com-

putation actually scales as O
(

dT (
∑d

i=1

∑pi

j=1mi, j)
2
)

, where mi,j is the number of bases

used for representing fi,j. For reasons of efficiency, we suggest using approximate inference

for multivariate models, and we provide such an example in section 6.2 where we look at a

bivariate financial time series.

3.5.2 State Space Models

A SS model describes the evolution of an observable random sequence {Y t} based on that

of a latent random sequence {Z t}. The dynamics of a general linear state space (LSS)
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model are

Y t = Gt + HtZt + W t

Zt+1 = F t + EtZt + V t

where the Y t and Zt are dY − and dZ−dimensional vectors, {W t} and {V t} are independent

vector error sequences of the same dimensions, and Gt, H t, Et, and F t are nonstochas-

tic, possibly time-varying matrices of dimensions dY × 1, dY × dZ , dZ × 1 and dZ × dZ ,

respectively. Gaussian LSS models, for which the error terms are normal, are by far the

most popular SS models, the main reason being their generality and ease of use. In partic-

ular, they include ARMA and ARIMA models, factor models and dynamic regression. The

statistical analysis of these models relies on the celebrated Kalman filter which, in turn,

takes advantage of the conjugacy of the normal distribution to perform the analysis in a

sequential manner. The LSS model appears under various names in the literature such as

Structural Time Series or Dynamic Linear model. Good overviews of the model and the

associated Kalman filtering procedures are given in Harvey [54], West and Harrison [121]

and chapter 12 of Brockwell and Davis [14].

We also look at SS models for which the error terms are normal, but we relax the requirement

of linearity in the dynamics. Our goal is to allow more flexibility without sacrificing the

convenience of the conjugate calculations, and in order to achieve this we have to impose

some restrictions on the model dynamics. Specifically, we look at nonlinear SS (NLSS)

models of the form

Y t = G(U t−1)Xt−1 + H tZt + W t (3.24)

Zt+1 = F (U t)X t + EtZt + V t (3.25)
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where G(·), F (·) are general matrix functions of arguments U t, multiplied by regressor

vectors X t. The sequences of arguments and regressors {U t} and {X t} can be stochastic,

but they have to be observed by time t. We estimate the functions in G, F using reduced

rank approximations of GPs, as in the FAR model. The basic restriction we impose on the

dynamics of the NLSS model (3.24-3.25) is that the latent process {Z t} can serve neither as

an argument nor as a regressor in the nonlinear terms, in order to preserve the conditional

normality of the process. At any time t, we want to describe the conditional distribution

of the state variable Z t by a normal distribution. Since function evaluations in our GP

framework are also normal, we cannot multiply them with the state variable or use the

state variable as an argument.

We describe how we address estimation from model (3.24-3.25). The main idea is to treat

every function evaluation as another latent variable and do sequential analysis, which is

essentially what we do when we perform online estimation for the FAR model. Compared

to a SS model, the difference in the FAR model is that the state space dimension expands

with the number of observations, and this prevents us from using Kalman filtering tech-

niques which rely on a fixed dimension state variable with a Markovian structure. We can

overcome this problem by using a reduced rank approximation and treating the random

function evaluations as linear combinations of a finite basis with random coefficients, as in

subsection 3.1.2. The random coefficients are treated as latent variables and are attached to

the vector Z t. Since every function evaluation in our model comes from the same function

draw, the coefficients are the same for every evaluation and therefore satisfy the Markovian

assumption. Thus, we can recast the model in SS form using the reduced rank approxima-

tion. Before we treat model (3.24-3.25) in full generality, and in order to fix ideas, we look

at two simple cases.
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First, consider the simple NLSS model

yt = f(yt−1) + zt + εt

zt+1 = αzt + rt

where we want to estimate function f nonparametrically. We put a GP(µ,C) prior on f

and use an order m reduced rank approximation f(·) = µ+
∑m

i=1 βiC(·, bi) = µ+C(·, b)>β

with basis points b = [b1, . . . , bm]> and coefficient vector β = [β1, . . . , βm]>. A priori,

β follows a normal distribution with zero mean and covariance matrix C−1
b , where Cb =

[
{C(bi, bj)}m

i,j=1

]
. We expand the state variable zt into the (m+1)−dimensional state vector

z′
t = [zt, β1, . . . , βm]>. The dynamics of the approximate SS model become

yt = µ+ [1, C(yt−1, b1), . . . , C(yt−1, bm)]z′
t + εt

z′
t+1 =












α 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1












z′
t +












rt

0

...

0












Now, suppose function f appears in the the latent process {zt}

yt = zt + εt

zt+1 = f(yt) + αzt + rt

Although it seems that we just shifted the observed mean level from one equation to an-

other, the two models are very different. In the first case the effect of the function is only

instantaneously expressed, whereas in the second case it carries over to subsequent obser-

vations, because the state process has autoregressive dynamics. We can approximate this
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model, using the same idea, by

yt = [1, 0, . . . , 0]z ′
t + εt (3.26)

z′
t+1 =












µ

0

...

0












+












α C(yt, b1) . . . C(yt, bm)

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1












z′
t +












rt

0

...

0












(3.27)

We now extend this approach to the general NLSS model (3.24-3.25). For every function

in the matrices G and F we use a reduced rank approximation to express it as a linear

combination of a collection of U t-dependent basis functions times some X t-dependent ar-

guments. The function uncertainty in this representation is described by the distribution

of the random basis coefficients, which we treat as latent variables. We expand the latent

process Zt by these coefficients in order to form a new state vector Z ′
t. We also expand the

matrices H t and Et to accommodate the basis terms, getting the new matrices H ′(U t,X t)

and E′(U t,X t). The resulting approximate representation of the NLSS model (3.24-3.25)

is

Y t = MGXt−1 + H ′(U t−1,Xt−1)Z
′
t + W t (3.28)

Zt+1 = MF Xt + E′(U t,Xt)Z
′
t + V ′

t (3.29)

where MGXt−1 and MF Xt are terms accounting for the prior mean level of the functions

G and F respectively, and V ′
t is the appropriately expanded latent error vector. We impose

the prior on the functions through the initial distribution of the state variable.

Our approximate NLSS model (3.28-3.29) falls into the category of conditionally Gaussian
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random processes and lends itself to filtering techniques. Lipster and Shiryaev [76] give

an extensive treatment of conditional Gaussian filtering. On the theoretical side, the au-

thors show that there exists a solution to (3.28-3.29) whenever the elements of M GXt−1

and MFX t have finite second moments and the elements of H ′ and E′ are almost surely

bounded, plus some additional conditions on the initial state distribution (see p.76 of Lipster

and Shiryaev [76]). In our setting, these conditions will always be satisfied if the nonlinear

functions are additive (the regressors X t are unity) and we use a squared exponential ker-

nel, because the basis functions will be bounded. For more general models the conditions

do not hold by default, but we can still apply the same statistical procedure to obtain the

Kalman recursions, which only rely on the conditional normality assumption.

Next, we put our approach in context with respect to competing methods. The idea of

linearizing the functions in a NLSS model is not new and dates back at least to Ghahramani

and Roweis [42], who use Gaussian kernel bases for representing the nonlinear functions.

The authors use the extended Kalman filter for approximating the filtering equations and an

EM algorithm for choosing the coefficients in the representation, which are free parameters

and are not regularized. Wang, Fleet and Hertzmann [119] explicitly put Gaussian priors

for the nonlinear functions, but they treat the latent variables {Zt} as parameters over

which the likelihood is maximized. This is different from filtering methods, for which the

likelihood is marginalized over the latent variables. Both of these references are focused

toward general models of the form

Y t = G(Zt) + W t

Zt+1 = F (Zt) + V t

where the state variable is nonlinear in both the state and the observation equation. In

contrast, we require the state variable to appear only linearly in the model, and permit
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nonlinear terms only for observed variables. Our contribution lies in identifying the ap-

propriate NLSS model form and using reduced rank approximations in such a way that

nonparametric estimation can be tackled with essentially linear methods. Even though the

dynamics of the model are restricted, we can perform inference very simply and efficiently.

In particular, this method allows us to treat FAR models with a linear moving average term.

We describe the implementation of our NLSS estimation method through a simulated ex-

ample. We generate 1000 observations from the following model

yt = zt + εt (3.30)

zt+1 = f(yt) + αzt + rt (3.31)

where εt
i.i.d.∼ N (0, σ2), rt

i.i.d.∼ N (0, ω2), σ = .5, ω = .2, α = .5, and f is a sinusoidal

function given by f(x) = cos(3x)/2. The initial value of the state variable z1 is drawn

from N (0, ω2), and the plot of the generated series is given in Fig. 3.5. Our goal is to

estimate the nonlinear function nonparametrically, so we put a GP(µ,C) prior on f , where

C(x, x′) = ν2 exp{(x− x′)2/h2} is a squared exponential kernel. We represent the function

in reduced form using 10 equally spaced basis points {bi}10
i=1 in the observed range of yt,

as f(·) = µ +
∑m

i=1 βiC(·, bi). The state vector becomes zt = [zt, β1, . . . , β10]
> and the

approximate NLSS model is the same as in (3.26-3.27). We do not assume knowledge of the

model parameters (σ,ω,α) or the kernel hyperparameters (µ,ν,h), but we choose them by

maximizing the marginal likelihood of the model, calculated using the Kalman filter. For

this, the initial distribution of the state variable must be be normal. Assuming the initial

distribution of the original state z1 is N (mz1
, s2z1

), the initial distribution of the extended
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state z′1 becomes

N











mz1

010×1




 ,






s2z1
01×10

010×1 C−1
b











where Cb is the covariance matrix of the basis points (to avoid singularities in C−1
b , we use

a smooth perturbation of the covariance kernel). From this point, it is straightforward to

apply Kalman recursions for filtering, smoothing and likelihood calculation in the expanded

model, e.g. see Harvey [54].

We give more details on the practical choices we make for fitting our model to the simu-

lated data. First, we treat the prior uncertainty ν as a free parameter, and do not fix its

value relative to σ as in the FAR model. We do this because we have not found a satisfac-

tory method for describing ν in relation to the other parameters. Our heuristic argument

regarding Fisher information in FAR models does not carry over to NLSS models, since,

in the later case, the information in the observations is divided between estimation of the

latent states {zt} and estimation of the function f . If we have more than one functional

coefficient, we suggest making them share the same prior uncertainty within each equation

(state or observation), and treat these uncertainty levels as free parameters. Moreover,

we set mz1
, s2z1

equal to the sample moments of {yt}, since yt is equal to zt with added

noise. In more general settings, we propose using a reasonably diffuse normal distribution,

since the effect of the initial distribution dies off with more data in well behaved models.

We apply the Kalman filter for calculating the marginal likelihood, which we maximize

over (σ, ω, α, µ, ν, h) using a gradient descent algorithm. For simplicity, we use a numerical

approximation to the gradient, but for models with many parameters it might be more con-

venient to calculate it explicitly. The gradient can be obtained by straightforward, although

tedious, differentiation of the Kalman recursions. Shumway and Stoffer [106] proposed an
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Figure 3.5: Plot of simulated data from model (3.30-3.31), (a) observations, (b) state vari-
ables.

alternative way of selecting parameters in the LSS model which is based on the expectation

maximization (EM) algorithm and is potentially more stable, but we have not experimented

with it yet. Finally, we describe our suggestion for the initial values of the numerical gra-

dient descent algorithm. First, we fit a LSS model to the data by substituting the function

f with a constant φ and optimizing its marginal likelihood over the parameters. Similar to

the FAR setting, we relate the selected parameters in the LSS model with the initial values
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of the NLSS model. In particular, the parameters that appear in both models are equated,

and for the kernel hyperparameters we set µinit = φ̂, νinit =
√
σ̂2 + ω̂2 and hinit = Sy,

where Sy is the sample standard deviation. Turning back to our simulated data, the se-

lected parameters are given in Table 3.2 and the posterior distribution of the function is

shown in Fig. 3.6. Both the model parameters and the estimated function are close to their

true values. In Fig. 3.7 we also plot the true state variables {zt} versus the output of the

Kalman smoother (i.e. E[zt|y1, . . . , yT ], for t = 1, . . . , T ), which lie close to the 45-degree

line as we would expect. Our proposed method seems to work well for the simulated data

set, and can be useful for efficient nonparametric estimation in the class of NLSS models we

consider. We give a real data example in section 6.3, where we apply our NLSS methodology

to a stochastic volatility model.

Table 3.2: The parameters that maximize the marginal likelihood of the simulated data
from model (3.30-3.31).

model f

α 0.55169 µ 0.16590
σ 0.52455 ν 0.50226
ω 0.26841 h 0.82661

` = -934.2438
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Figure 3.6: Plot of estimated and true functions from model (3.30-3.31).
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Figure 3.7: Plot of true versus Kalman smoothed state values from model (3.30-3.31).



Chapter 4

Theoretical Properties

In this chapter we explore some of the theoretical aspects of our proposed nonparametric

estimation technique. Our main goal is to prove the consistency of our estimators from

a frequentist perspective and, through that, get an understanding of the conditions under

which our method is expected to perform best. We begin with an overview of relevant the-

oretical results for nonparametric estimation, and we then discuss the characteristics of our

model which help in the development of its properties, in particular its correspondence to

penalized regression in reproducing kernel Hilbert spaces. The basic result is Theorem 4.3

which proves the consistency of our functional coefficient estimates in such spaces under

sufficient identifiability and ergodicity conditions, covering both the Markov and the more

general time series regression setting. Finally, we describe the theoretical behavior of esti-

mation with reduced rank approximations, because this is what we realistically use for large

data sets and is, therefore, more fitting for asymptotic considerations.

4.1 Review of Nonparametric Estimation Theory

Many theoretical results from nonparametric estimation with independent data have been

extended to a time series context. The monograph of Bosq [9] contains a detailed review of

81
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kernel regression and kernel density estimation for dependent sequences of data. Specifically,

he provides consistency, asymptotic normality and convergence rates for kernel estimators

of the NLAR model under mixing conditions. Masry and Fan [80] give similar results for

local polynomial regression, under the same type of conditions. We are more interested,

however, in the FAR model, for which several results have appeared depending on the es-

timation procedure used. For the ALR method, Chen [20] proves mean square consistency

of the functional coefficients evaluated at the observed data points, and Chen and Liu [21]

show that the functional coefficient estimates, evaluated at a fixed point, converge to a

normal distribution. For the LLR method, Cai, Fan and Yao [16] also look at fixed point

evaluations, and give consistency and asymptotic normality of the coefficient estimates. For

both ALR and LLR, the authors assume the coefficients are twice differentiable and pro-

vide standard nonparametric T 2/5 convergence rates. Finally, Huang and Shen [60] prove

L2 consistency of their spline regression estimated functions over a compact range. All the

results for the FAR model require special identifiability and ergodicity conditions, similar

to the ones we adopt later.

Turning to GP regression, the question of consistency can be interpreted in a Bayesian man-

ner, by looking at the concentration of the posterior distribution around the true function.

This approach has been adopted by Shen and Wasserman [105], and recently Ghosal and

van der Vaart [43] extended it to non i.i.d. data, including a first order NLAR model. How-

ever, their results rely on technical entropy conditions that are difficult to verify. Choi [24]

gives more intuitive conditions in terms of the GP prior specification, but his setting does

not cover time series. We do not consider posterior consistency, but rather focus on the

consistency of point estimates, i.e. the posterior means of the functional coefficients. Lin

and Brown [73] look at GP regression from this perspective, using a periodic variation of

the Gaussian prior kernel, and demonstrate that the method performs well, in a minimax
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sense, when the true function is very smooth. Our treatment of the FAR model aims at

consistency, but we do not provide convergence rates or adaptive results for smoothness

classes of function, because our setting is more involved and the results also depend on the

dynamic behavior of the data, not just the functional coefficients’ smoothness.

4.2 GP regression and Reproducing Kernel Hilbert Spaces

We now establish a connection between GP estimation for the FAR model and reproducing

kernel Hilbert spaces (RKHSs). We give a brief introduction to RKHSs, together with

the relevant results for our purposes, in section A in the Appendix. The main point of

this section is Lemma 4.2, which gives a convenient characterization of the posterior mean

functions. Suppose we have the model

Yt = f1(U
(1)
t )X

(1)
t + . . . + fp(U

(p)
t )X

(p)
t + εt (4.1)

fi ∼ GP(µi, Ci), i = 1, . . . , p, (4.2)

and each function’s covariance kernel Ci(·, ·) defines its RKHS Ki respectively, see The-

orem A.4 in the Appendix. For simplicity, we assume that all prior mean functions are

constant, equal to zero, µi(·) = 0; from (2.10) the posterior mean of the vector of observed

functional coefficients is E[f |y,x,u] = Cα, where

α = X(Σ + X>CX)−1y (4.3)

Moreover, the posterior means of the functions {fi} evaluated at an arbitrary point are

E[fi(·)|y,x,u] =
∑

t

αi,tCi(·, u(i)
t ); i = 1, . . . , p
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where the coefficients αi,t are such that α>
i = [. . . , αi,t, . . .] and α> = [α1, . . . ,αp]

>. The

posterior mean functions are linear combinations of their covariance kernels centered at

the observed arguments, thus each E[fi(·)|y,x,u] belongs to its corresponding RKHS Ki.

There is an equivalent way of obtaining these estimates through a penalized least squares

problem in the RKHS. First, we need the following proposition which is an extension of

the Representer Theorem of Kimeldorf and Wahba [68] to varying coefficient regression.

Schölkopf, Herbrich and Smola [99] have generalized the Representer theorem to a larger

class of regularizers and empirical risk functions, and our proof is adapted from theirs.

Proposition 4.1 (Representer Theorem for Varying Coefficient Models). Assume spaces Xi

endowed with positive definite kernels ki : Xi ×Xi → R and their corresponding RKHSs Ki,

for i = 1, . . . , p, and a sample
{
yt, {ui,t}p

i=1, {xi,t}p
i=1

}T

t=1
, where yt, xi,t ∈ R and ui,t ∈ Xi.

Then any functions {f ?
i ∈ Ki}p

i=1 that minimize

∑

t

(yt − f1(u1,t)x1,t − . . .− fp(up,t)xp,t)
2 +

∑

i

‖fi‖2
Ki

(4.4)

admit a representation of the form

f?
i (·) =

∑

t

αi,tki(·, ui,t); i = 1, . . . , p (4.5)

Proof: Consider linear subspaces KD,i ⊂ Ki spanned by the functions {ki(·, ui,t)}T
t=1 and

their orthogonal complements K⊥
D,i ⊂ Ki, for i = 1, . . . , p. Every fi ∈ Ki has a unique

decomposition fi(·) = f
‖
i (·) + f⊥i (·) =

∑

t αi,tki(·, ui,t) + f⊥i (·), where f
‖
i ∈ KD,i and f⊥i ∈

K⊥
D,i. Using the reproducing property, for any ui,s in the sample we have

fi(ui,s) = 〈fi(·), ki(·, ui,s)〉Ki
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=
∑

t

αi,t〈ki(·, ui,t), ki(·, ui,s)〉Ki
+ 〈f⊥i (·), ki(·, ui,s)〉Ki

=
∑

t

αi,tki(ui,t, ui,s)

where the second term vanishes due to orthogonality. So, the values of any fi evaluated

at the data points only depend on f
‖
i and not on f⊥i . Assume a solution {f ?

i }p
i=1 with

decomposition f
?‖
i ∈ KD,i and f?⊥

i ∈ K⊥
D,i, for i = 1, . . . , p. The first term in the objective

function (4.4) is independent of the orthogonal complements and the second term is the

sum of the function norms

∑

i

‖f?
i ‖2

Ki
=
∑

i

‖f?‖
i ‖2

Ki
+ ‖f?⊥

i ‖2
Ki

≤
∑

i

‖f?‖
i ‖2

Ki

This implies that for each f ?
i we must have ‖f ?⊥

i ‖2
Ki

= 0, thus f ?
i ∈ KD,i and the represen-

tation (4.5) is valid. �

Proposition 4.1 is easily extended to more general objective functions. Assume the following

minimization problem

min
fi∈Ki, i=1,...,p

{
∑

t

C (yt, {xi,t, fi(ui,t)}p
i=1) + Ω ({‖fi‖Ki

}p
i=1)

}

(4.6)

where the loss function C is point-wise, i.e. it depends on the fi’s only through their values

at the data points, and the penalty function Ω : R
p
+ → R that is strictly monotonically

increasing. Then the same representation (4.5) applies to the solution of (4.6).

We have already seen that the posterior mean functions from our model belong to their

corresponding RKHSs. The next step is to identify these functions as the solutions to a

penalized least squares problem.

Lemma 4.2. Let
{
yt, {ui,t}p

i=1, {xi,t}p
i=1

}T

t=1
be a sample from (4.1). The posterior means
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of the functional coefficients from our GP estimation procedure are given as solutions to the

following minimization problem

min
fi∈Ki, i=1,...,p

{

1

σ2

∑

t

(

yt − f1(u
(1)
t )x

(1)
t − . . .− fp(u

(p)
t )x

(p)
t

)

2 +
∑

i

‖fi‖2
Ki

}

(4.7)

Proof: From Proposition 4.1, we can represent the functions evaluated at the observed

arguments as f = Cα, where α is the stacked vector of the representation coefficients.

Substituting back into (4.7), we get the minimization problem

min
α

{

(y − X>Cα)>Σ−1(y − X>Cα) + α>Cα
}

Differentiating w.r.t. α and setting the gradient equal to zero, the solution for α is equal

to (4.3). Thus, the posterior mean functions from our procedure are exactly the solutions

to problem (4.7). �

In our exposition, we fixed the prior mean functions to zero, but this can be relaxed. In

particular, assuming that the prior mean for each fi is given by an arbitrary µi, it is obvious

from (2.10) that the posterior mean of each function is a linear combination of µi and an

element of Ki. The analogous semiparametric representer theorem involves a minimization

over the spaces of functions Ki + span{µi} = {fi : fi = gi + βµi;β ∈ R, gi ∈ Ki}, see e.g.

Theorem 2 in [99].

4.3 Consistency

We look at the consistency of ours estimator from a frequentist perspective. We assume

our data come from the true underlying model

Yt = f1(U
(1)
t )X

(1)
t + . . .+ fp(U

(p)
t )X

(p)
t + εt (4.8)
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with fixed but unknown functional coefficients fi. The regressor and arguments variables

{X(i)}p
i=1 and {U (i)}p

i=1, are allowed to be endogenous (lagged values of Yt) or exogenous, in

any combination. We estimate the functional coefficients based on data
{
yt, {x(i)

t , u
(i)
t }p

i=1

}T

t=1
,

using an independent GP prior GP(0, Ci) for each fi. We assume the prior mean is zero

and the prior covariance Ci is fixed, and defines a RKHS Ki, for each function. Before we

present our consistency result for the posterior mean functions of our estimation procedure,

we provide the required conditions. The first set of conditions C.1 must hold in any case,

but we impose two alternative conditions to ensure ergodicity, depending on whether model

(4.8) is Markovian or not.

Condition C.1. Let X>
t = [X

(1)
t , . . . , X

(p)
t ] and U>

t = [U
(1)
t , . . . , U

(p)
t ].

i. The process {X t,U t} is jointly strictly stationary, with stationary measure π.

ii. There exists a compact set C ∈ Rp with positive Lebesgue measure, such that the

eigenvalues of Eπ[X tX
>
t |U t = ut] are uniformly bounded away from zero and infinity

for all ut ∈ C, and the density of U t over C is bounded away from zero.

iii. The functions {fi}p
i=1 belong to the corresponding RKHSs {Ki}p

i=1 and are bounded.

iv. The error terms {εt} are an independent white noise sequence.

We do not discuss conditions C.1.i and C.1.iv, since they are standardly assumed for time

series. Condition C.1.iii requires the functional coefficients to belong to the RKHSs of the

prior covariance functions, implying that we have knowledge the appropriate Ci’s. For the

Gaussian kernels that we typically use, the RKHSs are considerably smooth, containing in-

finitely differentiable functions. However, our consistency result also holds for more general

covariance kernels. More important is Condition C.1.ii, which serves as an identifiability

condition for the functions. The compact set C restricts the range over which consistency

holds, in order to avoid problematic behavior at infinity. The condition can fail depending
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on the specification of the model; for instance, when U
(i)
t = X

(i)
t for all i, then the condition

fails for any set C because this FAR model is equivalent to an additive model. However,

the condition is not void; consider for example the following Markovian FAR model

Xt = f1(Xt−2)Xt−1 + f2(Xt−2)Xt−2 + εt (4.9)

with stationary measure π. Letting X>
t = [Xt−1, Xt−2], U t = Xt−2 and X̄t−1 = Xt−1 −

εt−1 = Xt−2f1(Xt−3) +Xt−3f2(Xt−3), we have

Eπ[XtX
>
t |Xt−2 = x] = Eπ












X2
t−1 Xt−1Xt−2

Xt−1Xt−2 X2
t−2




 |Xt−2 = x







= Eπ












X̄2
t−1 X̄t−1Xt−2

X̄t−1Xt−2 X2
t−2




+






X̄t−1εt−1 + ε2t−1 εt−1Xt−2

εt−1Xt−2 0




 |Xt−2 = x







=






a11(x) a12(x)

a21(x) x2






︸ ︷︷ ︸

A(x)

+






σ2 0

0 0






where a11(x) = Eπ[X̄2
t−1|Xt−2 = x], a12(x) = a21(x) = Eπ[X̄t−1Xt−2|Xt−2 = x]. We assume

that functional coefficients are continuous and bounded, and that the stationary measure is

well behaved in the sense that it is absolutely continuous with respect to Lebesgue measure

and expectations in A(x) are finite. An obvious, although uninteresting, example is the

linear Gaussian AR model, but it is easy to imagine small, nonlinear variations thereof

which retain these properties. The matrix A(x) is positive semi-definite by construction for

any x. For some x 6= 0, and after the addition of σ2 in its first element, both eigenvalues of

the matrix are positive. Since these eigenvalues are continuous functions of x, we can find a

compact set C, excluding zero, which satisfies Condition C.1.ii on the eigenvalues and the

stationary measure. In general, this condition is quite strong and difficult to verify, but the
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same identifiability requirements are always used for the theoretical development of FAR

models.

In the case where all {X (i)}p
i=1 and {U (i)}p

i=1 variables are lagged values of Yt, we require

in addition the following conditions C.2.

Condition C.2.

i. The variables in X t,U t depend only on a finite number of lagged values of Yt.

ii. The Markov chain {X t,U t} is positive Harris recurrent.

In the case where there is at least one exogenous variable serving as either a regressor or

an argument, we alternatively require the more general mixing conditions C.3.

Condition C.3.

i. For some r >2, the elements of X t satisfy Eπ

[

|X(i)
t X

(j)
t |r

]

≤ ∞, for all i, j = 1, . . . , p

ii. The process {X t,U t} is α-mixing with coefficients α(t) such that
∑

t≥1 α(t)
r−2

r <∞

(e.g. they decay exponentially as α(t) ≤ Ct−a, at a rate a > r/(r + 2) )

The importance of the last two conditions is illustrated in the following section. We are

now in a position to state our main result.

Theorem 4.3. Assume Condition C.1 and either Condition C.2 or Condition C.3 hold, and

let {f̂i} be the posterior means of the functional coefficients from our GP method, applied

over the set C. Then

‖f̂i − fi‖2
Ki(C)

P→ 0; T → ∞, ∀i = 1, . . . , p

where Ki(C) is the restriction of Ki over C.
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The coefficient estimates over C converge to the true functions in the RKHS metric, which

also implies pointwise convergence by the properties of RKHSs (see Appendix).

4.3.1 Ergodicity

For proving Theorem 4.3 we first need to establish the ergodicity of the process in the sense

that

1

T

T∑

t=1

fi(u
(i)
t )x

(i)
t fj(u

(j)
t )x

(j)
t I(ut ∈ C)

P→ Eπ

[

fi(U
(i)
t )X

(i)
t fj(U

(j)
t )X

(j)
t I(U t ∈ C)

]

(4.10)

as T → ∞, for bounded functions {fi} and any i, j = 1, . . . , p. In the remainder we

sometimes suppress the dependence on the compact set C to simplify notation, but it is

implicitly assumed that the result holds over this set. We show that Condition C.1 together

with either Condition C.2 or C.3 can guarantee (4.10) under the Markovian or mixing

setting, respectively.

Markov Conditions

If the variables {X (i)}p
i=1 and {U (i)}p

i=1 in (4.8) consist only of lagged values of Yt, then the

process {Y t = [Yt, . . . , Yt−q+1]
>} is a Markov chain, where q is the maximum between the

autoregressive order and the maximum lag used in defining the arguments. Markov pro-

cesses have been studied extensively under various frameworks, and there is a plethora

of results regarding different types of ergodicity. The following theorem of Meyn and

Tweedie [84], although quite general, is sufficient for our purposes.

Theorem 4.4. (Meyn and Tweedie [84], Thm 17.1.7, p. 421) Let {Xt}, taking values in

X , be a positive Harris recurrent Markov chain with stationary measure π. Then, for any
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f ∈ L1

(
X ,B(X ), π

)
, we have almost surely that

lim
T→∞

1

T

T∑

t=1

f(Xt) = Eπ[f(X1)] (4.11)

The next proposition establishes the desired result.

Proposition 4.5. Under Conditions C.1 and C.2, equation (4.10) holds.

Proof: Let F (i,j)(Xt,U t) = fi(U
(i)
t )X

(i)
t fj(U

(j)
t )X

(j)
t I(U t ∈ C) for bounded functions

fi, fj and i, j = 1, . . . , p. Using Condition C.2 we can directly apply Theorem 4.4, provided

we can show that F (i,j) ∈ L1

(
C,B(C), π

)
. Since the functions are bounded, we only need

to show X
(i)
t X

(j)
t ∈ L1

(
C,B(C), π

)
. Letting ‖X‖p =

( ∫

C |X|pdπ
)1/p

and using Hölder’s

inequality, we have ‖X (i)
t X

(j)
t ‖1 ≤ ‖X(i)

t ‖2‖X(j)
t ‖2. Let ei be a vector of zeros with one at

the ith coordinate, then

‖X(i)
t ‖2

2 = Eπ

[

(X
(i)
t )2 I(U t ∈ C)

]

= Eπ,C

[

e>
i XtX

>
t ei

]

= Eπ,C

[

e>
i Eπ,C

[

XtX
>
t |U t

]

ei

]

≤M Eπ,C

[

e>
i ei

]

= M

by using Condition C.1.ii. Thus, ‖X (i)
t ‖2 ≤

√
M for any i, and F (i,j) ∈ L1

(
C,B(C), π

)
, so

we can apply of Theorem 4.4 to prove equation (4.10). �

In the Markovian case, it is possible to verify the ergodicity of the process in terms of

the functional coefficients of the true model. The preferred approach in the literature for

establishing the ergodicity of the FAR model is based on drift conditions on the dynamics

of the process. The definitive reference on the subject is the book of Meyn and Tweedie [84]

on the stochastic stability of Markov chains. Under conditions on the true functions {fi}

and the error distribution, we can ensure that (4.10) holds. The following theorem, which
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is due to Chen [20], provides such sufficient conditions for the FAR model based on Foster-

Lyapunov type criteria (for more details see Meyn and Tweedie [83] and Tjøstheim [112]).

Theorem 4.6. (Chen [20], Thm 2.3, p. 31) Consider the Markovian FAR model

Xt = f1(U
(1)
t )Xt−1 + . . .+ fp(U

(p)
t )Xt−p + εt

and assume that each function can be written as fi(U
(i)) = gi(U

(i)) + hi(U
(i)) such that

gi(·) and hi(·) are bounded, with |gi(U
(i))| < ci and hi(U

(i))Xt−i being uniformly bounded,

for i = 1, . . . , p. Furthermore, let εt be a white noise sequence with an everywhere positive

density with respect to Lebesgue measure, and the roots of the characteristic polynomial

λp − c1λ
p−1 − . . . − cp = 0 all lie inside the unit circle. Then, the process is geometrically

ergodic.

As a consequence of this theorem, Theorem 4.4 also holds and we can establish the ergodic-

ity result we need. We can therefore substitute the rather general Condition C.2.ii with the

more concrete conditions of Theorem 4.6 on the true functions and the error distribution.

The conditions in Theorem 4.6 can be easily verified for a given set of functional coefficients,

but they are rather strict. For instance, it is possible to have geometric ergodicity for FAR

models whose functions are arbitrarily big, as Chan et al. [19] have shown for the first order

TAR model, even though these counter examples are quite extreme. In reality, the condition

on the characteristic roots is the most restrictive, because we try to control the behavior

of the process by that of a stationary AR model. Nevertheless, Theorem 4.6 provides a

practical tool for checking the stability of a fitted model, which is especially useful when we

want to perform simulation.

As an example of this approach, consider again model (4.9) where the error term has

a continuous positive density. If f1 is bounded by c1, f2 bounded c2 and the roots of
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λ2 − c1λ − c2 = 0 lie inside the unit circle, then the process is geometrically ergodic.

Assume now that we do not know the true functions but we estimate them using our

GP method, based on a Gaussian kernel k, and we want to check if the model we got is

stationary and ergodic. For a fixed sample T , our estimates will be of the form f̂i(·) =

αi,0 +
∑

t αi,tk(·, xt−2). For the first coefficient f1, the argument of the function Xt−2 is

different from the regressor Xt−1, so we cannot find any useful decomposition f̂1 = g1 + h1

such that h1(x1)x2 is bounded over the range of (x1, x2). However, we can still find an

overall bound c1, because f̂1 is represented by a sum of bounded functions plus a constant.

For the second coefficient, on the other hand, we can take the decomposition c2 = α2,0 + ε

(where ε > 0) and h2(·) =
∑

t α2,tk(·, xt−2). The convenience of this choice stems from

the fact that h2(x)x is bounded, since the Gaussian kernel decays exponentially fast. The

bound c2 is sharper than if we tried to bound the entire function f̂2, and the characteristic

roots are more likely to lie within the unit circle. Therefore, our model’s estimates, using

a Gaussian kernel, are usually well suited for verifying the conditions of Theorem 4.6. We

note for comparison that if we used a spline basis for the representation of the functions

it would be almost impossible to verify the same conditions, because splines extrapolate

linearly outside the observed range and there would be practically no chance of bounding

the functional coefficients.

Mixing Conditions

The second set of conditions is used in a much more general setting; it does not require

a Markovian structure and it applies to autoregression, time series regression and hybrids

thereof. However, these conditions cannot be easily verified based on the true model. We

allow the regressors {X (i)} and the functional coefficient arguments {U (i)} to be arbitrary

time series. In order to prove ergodicity, we require the auto-dependence of the process to

decay fast enough, and a boundedness condition on the moments of the X (i)’s. We use the
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following theorem of Davydov [26], in the form appearing in Bosq [9].

Theorem 4.7. (Bosq [9], Thm 1.5, p. 34) Let {Xt} be a zero mean, real valued strictly

stationary and α-mixing process such that for some r > 2, Eπ [|Xt|r] < ∞ and the mixing

coefficients satisfy
∑

t≥1 α(t)
r−2

r < ∞. Then the series
∑

t∈Z Cov(X0, Xt) is absolutely

convergent to σ2 ≥ 0 and

lim
n→∞

nVarπ

[

1

n

n∑

t=1

Xt

]

= σ2.

The result gives mean square convergence, from which convergence in probability follows.

We use Theorem 4.7 to establish ergodicity in the next proposition

Proposition 4.8. Under Conditions C.1 and C.3, equation (4.10) holds.

Proof: Let Z
(i,j)
t = X

(i)
t fi(U

(i)
t )X

(j)
t fj(U

(j)
t ) I(U t ∈ C). We will show that the process

{Z(i,j)
t } is also α-mixing, with the mixing coefficients satisfying Condition C.3.ii for all i, j =

1, . . . , p. The α-mixing coefficient of two sub σ-fields B, C of a probability space (Ω,A, P )

is defined as α(B, C) = sup
B∈B,C∈C

|P (B ∩ C) − P (B)P (C)|, and the α-mixing coefficients of

a stationary series {Xt} are given by αt = α(σ(Xs), σ(Xs+t)), where σ(Xs) is the σ-field

generated by Xs. Let α
(i,j)
t be the coefficients for {Z (i,j)

t } and αt be the original coefficients

for {X t,U t}. It is straightforward to see that α
(i,j)
t ≤ αt, because Z

(i,j)
t is a function of

(X t,U t) and therefore σ(Z
(i,j)
t ) ⊂ σ(X t,U t). Thus, {Z(i,j)

t } is α-mixing (i.e. α
(i,j)
t → 0)

and its coefficients satisfy Condition C.3.ii. Moreover, Eπ[|Z(i,j)
t |r] ≤ ∞ for some r > 2,

because of Condition C.3.i and the boundedness of the functions. Defining µ(i,j) = Eπ[Z
(i,j)
t ],

the variable Z
(i,j)
t − µ(i,j) obviously satisfies the conditions of Theorem 4.7, which gives

lim
T→∞

T Varπ

[

1

T

T∑

t=1

(Z
(i,j)
t − µ(i,j))

]

= σ2
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for some σ2 ≥ 0. The validity of (4.10) follows readily from the above. �

Checking whether a hypothesized model satisfies α-mixing is not easy; the most common

cases in which one can prove strong mixing are for Markov models, where the last defy

the purpose since we can use the first set of conditions anyway. We must therefore content

ourselves with assuming beforehand that the process is α-mixing and just be aware of

obvious deviations. For example, we can check if the autocorrelation function of a series

decays to zero, since this is a necessary condition for α-mixing.

4.3.2 Proof of Consistency

We now present the proof of our main theoretical result

Proof of Theorem 4.3 : Assume we have T observations {yt, {x(i)
t , u

(i)
t }p

i=1}T
t=1 from the

true model (4.8), where the true functions {fi}p
i=1 belong to their corresponding RKHS

{Ki}p
i=1, each one having a reproducing kernel ki. Moreover, we put a GP prior on each

function fi ∼ GP(0, Ci), with zero mean and covariance kernel Ci equal to the reproducing

kernel of that function. The estimators {f̂i}p
i=1 of the functional coefficients over C are the

posterior mean functions of our method, which by Lemma 4.2 are given as the solutions of

the minimization problem

min
gi∈Ki

{

1

σ2

T∑

t=1

(

yt − g1(u
(1)
t )x

(1)
t − . . .− gp(u

(p)
t )x

(p)
t

)

2 I(ut ∈ C) +

p
∑

i=1

‖gi‖2
Ki(C)

}

(4.12)

Letting fi,t = fi(u
(i)
t ) and xi,t = x

(i)
t , substituting yt =

∑p
i=1 fi,txi,t + εt in (4.12) and

dividing by T , we equivalently get

min
gi∈Ki

1

T







T∑

t=1

(

εt +

p
∑

i=1

(fi,t − gi,t)xi,t

)2

I(ut ∈ C) + σ2
p
∑

i=1

‖gi‖2
Ki(C)






⇔
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min
gi∈Ki















I
︷ ︸︸ ︷

1

T

T∑

t=1

ε2t +

II
︷ ︸︸ ︷

2

T

T∑

t=1

εt

(
p
∑

i=1

(fi,t − gi,t)xi,t

)

+

+
1

T

T∑

t=1

(
p
∑

i=1

(fi,t − gi,t)xi,t

)2

︸ ︷︷ ︸

III









I(ut ∈ C) +
σ2

T

p
∑

i=1

‖gi‖2
Ki(C)







The squared error term I converges to σ2 and the cross-terms II converges to zero, due

to independence. Moreover, this convergence is uniform over the functions because they

are bounded. We turn attention to term III; under Condition C.2 or Condition C.3, the

average converges uniformly in the functional coefficients to the expectation with respect

to the stationary measure

1

T

T∑

t=1

(
p
∑

i=1

(fi,t − gi,t)xi,t

)2

I(ut ∈ C)
P→ Eπ,C





(
p
∑

i=1

X
(i)
t

(

fi(U
(i)
t ) − gi(U

(i)
t )
)
)2


(4.13)

Thus, the posterior estimates minimize the following objective function

Eπ,C





(
p
∑

i=1

X
(i)
t

(

fi(U
(i)
t ) − gi(U

(i)
t )
)
)2


+
σ2

T

p
∑

i=1

‖gi‖2
Ki(C) + oP (1) (4.14)

Heuristically, the smoothness penalty dies off as T → ∞ and we end up minimizing only

the expectation. Letting F >
t = [f1(U

(1)
t )− g1(U

(1)
t ), . . . , fp(U

(p)
t )− gp(U

(p)
t )], and M > 0 be

the upper bound on the eigenvalues from Condition C.1.ii, we have

Eπ,C





(
p
∑

i=1

X
(i)
t

(

fi(U
(i)
t ) − gi(U

(i)
t )
)
)2


 = Eπ,C

[

F>
t X tX

>
t F t

]

= Eπ,C

[

Eπ,C

[

F>
t XtX

>
t F t|U t

]]

= Eπ,C

[

F>
t Eπ,C

[

XtX
>
t |U t

]

F t

]
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≤ M Eπ,C

[

F>
t F t

]

= M

p
∑

i=1

Eπ,C

[(

fi(U
(i)
t ) − gi(U

(i)
t )
)2
]

We can, therefore, bound the objective function (4.14) from above by

M

p
∑

i=1

Eπ,C

[(

fi(U
(i)
t ) − gi(U

(i)
t )
)2
]

+
σ2

T

p
∑

i=1

‖gi‖2
Ki(C) + oP (1) (4.15)

We apply an eigendecomposition in the RKHS in order to minimize (4.15), which allows us to

translate the estimation problem into an infinite basis regression. We use Mercer’s theorem

(Theorem A.6 in the Appendix) to express the functions fi, gi ∈ Ki(C) in terms of their

eigendecomposition with respect to the stationary measure, giving fi(·) =
∑∞

j=1 fi,jφi,j(·)

and gi(·) =
∑∞

j=1 gi,jφi,j(·). Equation (4.15) becomes

M

p
∑

i=1

∫

C
(fi(ui) − gi(ui))

2 dπ(ui) +
σ2

T

p
∑

i=1

‖gi‖2
Ki(C) + oP (1)

=

p
∑

i=1







∞∑

j=1

{

M(fi,j − gi,j)
2 +

σ2g2
i,j

Tλi,j

}





+ oP (1)

We can readily minimize the above expression by differentiating it with respect to each fi,j

and setting the derivative to zero. From the uniformity of convergence we can assume the

oP (1) term is independent of the functions, so the solutions are given by

g?
i,j =

λi,j

λi,j + σ2/(TM)
fi,j (4.16)

The upper bound (4.15) converges to zero and the solutions converge to the true functions,

as T → ∞. To verify this, note that for any ε > 0 there exist n1, n2 > 0 such that

‖fi − g?
i ‖2

Ki(C) =

∞∑

j=1

(fi,j − g?
i,j)

2

λi,j
=

∞∑

j=1

f2
i,j

λi,j

(
σ2

TMλi,j + σ2

)2
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<

n1∑

j=1

f2
i,j

λi,j

(
σ2

TMλi,n1
+ σ2

)2

+ ε/2 < ε, ∀T > n2, i = 1, . . . , p

where we use the fact that the series giving the norm is convergent, so we can bound its tail.

Thus, the objective function (4.14) is also minimized by (4.16). Moreover, our estimators

{f̂i} must satisfy ‖fi − f̂i‖2
Ki(C) = oP (1), as T → ∞ and for i = 1, . . . , p. This is readily

proved by contradiction, using the lower bound on the eigenvalues of Eπ[X tX
>
t |U t = ut]

and following the same steps as before. If any one of the estimates does not converge to its

true coefficient function, then the objective function (4.14) will not attain its minimum as

given by (4.16). �

4.4 Properties of Reduced Rank Approximation

In this section we examine the theoretical properties of the reduced rank approximation

method we introduced in Chapter 3. The main characteristic in this setting is that we use

a fixed number of bases in the representation of the functional coefficients. Therefore, we

look at estimation as the number of observations increases and the function space basis

remains constant, in contrast to the exact case where we have as many basis functions

as observations. We assume that the estimated coefficient functions are represented by

f̂i(u) =
∑mi

j=1 αi,jφi,j(u), where the basis functions φi,j(u) are kernels Ci(u, u
(i)
j ) centered

at the basis points u
(i)
j . The resulting RKHS is degenerate, in the sense that it has a

finite dimensional eigendecomposition. Therefore, we relax the requirement that the true

functions belong to these RKHSs and substitute Condition C.1 with the following

Condition C.4. Let X>
t = [X

(1)
t , . . . , X

(p)
t ] and U>

t = [U
(1)
t , . . . , U

(p)
t ].

i. The process {X t,U t} is jointly strictly stationary, with stationary measure π.

ii. There exists a compact set C ∈ Rp with positive Lebesgue measure and such that the
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eigenvalues of Eπ[X tX
>
t |U t = ut] are uniformly bounded away from zero and infinity

for all ut ∈ C and the density of U t over C is bounded away from zero.

iii. The functions {fi}p
i=1 are measurable and bounded.

iv. The error term {εt} is a white noise series.

Our result for the approximate setting shows that the estimated coefficient functions con-

verge to the projection of the true functions on the approximation space under a particular

norm. The following proposition defines this norm

Proposition 4.9. Consider coefficient functions fi belonging to the space of bounded, mea-

surable functions Bi, for i = 1 . . . , p, and define the corresponding product space B = ⊗p
i=1Bi

of p-tuples f = [fi, . . . , fp] of such functions. Assume Condition C.4 holds and let B(C) be

the restriction of B to functions over C. Then, for f , g ∈ B(C), the function

< f , g >B(C)= Eπ,C





p
∑

i,j=1

X
(i)
t fi(U

(i)
t )X

(j)
t gj(U

(j)
t )





defines an inner product in B(C), with the induced norm being equivalent to Lebesgue norm.

Proof: The symmetry, linearity and non-negativity of the function is obvious. We just

need to prove non-degeneracy, but this will be a byproduct of the equivalence to Lebesgue

norm. We have

‖f‖2
B(C) =< f ,f >B(C) = Eπ,C





(
p
∑

i=1

X
(i)
t fi(U

(i)
t )

)2




= Eπ,C

[

F>
t XtX

>
t F t

]

= Eπ,C

[

Eπ,C

[

F>
t XtX

>
t F t|U t

]]

= Eπ,C

[

F>
t Eπ,C

[

XtX
>
t |U t

]

F t

]

≥ mEπ,C

[

F>
t F t

]

= m

p
∑

i=1

Eπ,C

[

f2
i (U

(i)
t )
]

≥ m′
p
∑

i=1

∫

C
f2

i (U
(i)
t )dµ
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where the last two inequalities follow from Condition C.1.ii on the lower bound of the eigen-

values and the stationary density. By using the upper bound on the eigenvalues, we can

similarly bound the norm from above, with respect to Lebesgue norm. As a result, the two

norms are equivalent and define the same topology in B(C). �

As a consequence of Proposition 4.9 we can define projections on B(C). We are now able

to state the result for approximate inference

Theorem 4.10. Assume Condition C.4 and either Condition C.2 or Condition C.3 hold.

Also assume that, in the reduced rank setting, each functional coefficient fi is represented in

terms of distinct basis functions {φi,j}mi

j=1. Let Si = span{φi,j; j = 1, . . . ,mi} be the span of

the bases, S = ⊗p
i=1Si be their product space and f ‖ be the projection of f on S(C) under

the metric of Proposition 4.9. Then, the posterior means {f̂i} of the functional coefficients

satisfy

‖f‖i − f̂i‖2
L2(C)

P→ 0; T → ∞, ∀i = 1, . . . , p

where T is the number of observations and convergence is in the restriction of L2 over C.

Proof: Following the same reasoning as in the proof of Theorem 4.3, and replacing fi =

f
‖
i + f⊥i , the estimators must minimize

Eπ,C





(
p
∑

i=1

X
(i)
t

(

f
‖
i (U

(i)
t ) + f⊥i (U

(i)
t ) − gi(U

(i)
t )
)
)2


+
σ2

T

p
∑

i=1

‖gi‖2
Ki(C) + oP (1)

We can split the expectation as

Eπ,C





(
p
∑

i=1

X
(i)
t

(

f
‖
i (U

(i)
t ) + f⊥i (U

(i)
t ) − gi(U

(i)
t )
)
)2


 =
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= Eπ,C





(
p
∑

i=1

X
(i)
t

(

f
‖
i (U

(i)
t ) − gi(U

(i)
t )
)
)2


+ Eπ,C





(
p
∑

i=1

X
(i)
t f⊥i (U

(i)
t )

)2


+

+2Eπ,C

[(
p
∑

i=1

X
(i)
t f⊥i (U

(i)
t )

)(
p
∑

i=1

X
(i)
t

(

f
‖
i (U

(i)
t ) − gi(U

(i)
t )
)
)]

The cross-term is zero due to orthogonality, and the second term is independent of the

estimates. Therefore, we can equivalently minimize

Eπ,C





(
p
∑

i=1

X
(i)
t

(

f
‖
i (U

(i)
t ) − gi(U

(i)
t )
)
)2


+
σ2

T

p
∑

i=1

‖gi‖2
Ki(C) + oP (1)

Using Condition C.4.ii, we minimize the upper bound

M

p
∑

i=1

Eπ,C

[(

f
‖
i (U

(i)
t ) − gi(U

(i)
t )
)2
]

+
σ2

T

p
∑

i=1

‖gi‖2
Ki(C) + oP (1)

We substitute the functions f
‖
i , gi with their basis expansion f

‖
i (u) =

∑mi

j=1 αi,jφi,j(u),

gi(u) =
∑mi

j=1 βi,jφi,j(u) to get

M

p
∑

i=1

Eπ,C









mi∑

j=1

(αi,j − βi,j)φi,j(U
(i)
t )





2

+
σ2

T

p
∑

i=1

‖gi‖2
Ki(C) + oP (1) (4.17)

Let Φ>
i = [φi,1(U

(i)
t ), . . . , φi,mi

(U
(i)
t )] and F i = Eπ,C [ΦiΦ

>
i ], where F i is positive definite.

Also, let β>
i = [βi,1, . . . , βi,mi

] and similarly for αi, and let ‖gi‖2
Ki(C) = β>

i Eiβi. We need

to minimize

p
∑

i=1

(

M(αi − βi)
>F i(αi − βi) +

σ2

T
β>

i Eiβi

)

+ oP (1)

The solutions are given by β?
i =

(
F i + σ2/(TM)Ei

)−1
F iαi, i = 1, . . . , p, which converge

to the coefficients of the projection as T → ∞. Moreover, the bound on the objective
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function (4.17) goes to zero, so the estimates f̂i converge to the projections f
‖
i under the

norm of Proposition 4.9 and, consequently, in the L2 space. �

Note that the projection of each function depends on the other functions through the

dependence of the regressors X
(i)
t and the arguments U

(i)
t . As a result, they can be quite

different from the usual L2 projections, although we expect them to be close when the

regressors and arguments are loosely dependent. Moreover, even though the projections are

dependent on the set C, they are consistent in the sense that if C ′ is another set satisfying

Condition C.4.ii, the projections of the true functional coefficients will agree on C ∩ C ′.

Theorem 4.10 is comparable to the consistency result of Huang and Shen [60] for spline

regression.

4.5 Comments

We now provide some general comments on the results we have presented. First, we point

out that all of the theory carries over from the FAR to the varying coefficient regression

setting. In particular, when the regressor and argument variables are independent we can to

remove the ergodicity requirements and still get the same results. Throughout this chapter,

we assumed zero prior means for the functional coefficients, contrary to what we propose

in practice. We did this for simplicity, but also because the prior mean is not important for

our consistency result. The consistency of our estimators is proved over a compact set with

positive probability, and the effect of any prior bias over this set diminishes asymptotically.

On the other hand, our proposal of non-zero prior means is motivated by the need to control

the behavior of the estimates for finite data and outside their observed range. Moreover,

in Theorem 4.3 we also make the simplifying assumption that we have perfect knowledge

of the RKHSs of the true functions. Essentially, we assume that we are using the correct

prior covariance kernel for each function, but in practice we use the data to select the kernel
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hyperparameters, i.e. the parameters which control smoothing such as the characteristic

lengthscales. Therefore, it would be interesting to investigate the behavior of our procedure

from the viewpoint of optimal adaptive estimation. This task is quite involved, however,

since it would also require establishing convergence rates for different classes of functions,

which we have not addressed here. Finally, we look at Theorem 4.10 for reduced rank

estimation. The theorem establishes the convergence of our estimators to the projection of

the true functions on the finite dimensional RKHSs of the approximate kernels. In most

cases, we expect the true functional coefficients to be smooth, so that the projection error

will be small. In particular, if we allow the number of bases in the approximation to increase

with the number of data in such a way that the projection error goes to zero, we will end

up with the original consistency result for the exact method.



Chapter 5

Identification and Inference

In this chapter we address further issues regarding the application of our proposed model,

our goal being to provide a complete and integrated statistical procedure for modeling and

inference. In particular, we look at model comparisons and how they can be applied for

model identification, by proposing a greedy model selection algorithm. We also look at

diagnostic checking for a given model specification; we examine the universal residuals for

our method and describe how they can be computed efficiently and used for goodness of

fit tests. Finally, we suggest simulation and graphical methods for revealing the dynamical

structure of a model.

5.1 Model Comparisons

We propose a method for comparing different models, which we also use for our model selec-

tion procedure. Our estimation technique provides us with the marginal model likelihood,

which is the basic quantity we use for these purposes. This is a distinguishing characteristic

of our model compared to other nonparametric estimation techniques which rely on least

squares. Suppose we want to compare two different model specifications, M1 and M2, with

marginal likelihoods given by LM1
(y) and LM2

(y), respectively. Our empirical Bayes esti-

104
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mation selects the hyperparameters by maximizing L(y), and this will always favor more

complex models. Therefore, we need to measure the complexity of competing models and

impose a penalty on their marginal likelihood based on it, in order to account for the extra

flexibility we allow for the coefficients. In nonparametric regression, this measure of com-

plexity or flexibility appears under the name of effective degrees of freedom (edf). For the

class of linear smoothers, in particular, there are at least three alternative definitions of the

edf, all of which rely on the smoother or hat matrix H, given by the formula for the fitted

values ŷ = Hy. These definitions are explicitly tr(H), tr(HH>) and tr(2H − HH>),

and they are motivated by analogies to linear regression, for more details see chapter 3.5

of Hastie and Tibshirani [56]. In practice, the most popular is the trace of the hat matrix,

and for smoothing splines its edf values lie between those of the other two definitions.

We define the edf of our model in a similar manner. As in the nonparametric regression

setting, the rationale behind our definition comes from the formula for the fitted values,

which is given in eqn (2.21) and which we reproduce below

ŷ = X>µ + X>CX(Σ + X>CX)−1(y − X>µ) (5.1)

The matrix H = X>CX(Σ+X>CX)−1 plays the role of the hat matrix. We can interpret

ŷ as a combination of the fitted values X>µ from a linear model (since the prior means are

constant) and the fitted values of a nonparametric smoother H applied to the deviations

(y−X>µ) from the linear model. Based on this observation, we define the effective degrees

of freedom DF as

DF = p+ tr(H) (5.2)

The first term p is just the order of the model, i.e. the number of functional coefficients.
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However, a better way to think of this term is as the number of free parameters required

for describing the prior mean functions, and this is what we would use if we allowed more

complex parametric forms for each µi. The second term is the trace of the hat matrix,

the definition we adopt for measuring the complexity of the nonlinear part. We add the

two terms because our framework does not impose a smoothness penalty on the prior mean

functions and the hat matrix H is independent of µ. We choose the trace of the hat matrix

over alternative definitions for two reasons: first, it is easier to calculate and second, its

values tend to lie between those of the other two definitions. We point out that our model,

as well as other nonparametric estimation techniques for time series, do not classify as linear

smoothers. When working with autoregressive models, the observations also serve as re-

gressor or argument variables and this invalidates much of the theoretical reasoning behind

using the trace of H . Lin and Pourahmadi [72] point out the dangers of treating the lags of

the series as fixed design variables and propose simulation alternatives. Nevertheless, our

definition in (5.2) has intuitively the right behavior, the edf decrease when any one of the

smoothing parameters hi increase, and it also works reasonably well in practice. It would

be instructive to try and develop more robust theoretical arguments for measuring edf in

time series autoregression, but we do not pursue this direction.

Based on our edf definition, we use standard methods for comparing different models such

as Akaike’s information criterion (AIC) given by AIC = −2`(y) + 2DF and introduced by

Akaike [1], or the Bayesian information criterion (BIC) given by BIC = −2`(y)+log(T )DF

and proposed by Schwartz [100]. We give an example of our model comparison method

applied to the Canadian lynx data. We look at the second order FAR model (2.30) that we

fit in section 2.6 and we compare it to the same model, restricted so that the first functional

coefficient is constant. The hyperparameters that maximize the marginal likelihood of the

restricted model are given in Table 5.1 and the posterior of the coefficients is presented
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Table 5.1: The hyperparameters that maximize the marginal likelihood of the Canadian
lynx series, with constant f1.

f1 f2

σ 0.2096703 µ1 1.3681759 µ2 -0.3458263
h1 ∞ h2 0.736213

`=9.170201

in Fig. 5.1, and they are comparable to Table 2.1 and Fig. 2.2, respectively. The two

specifications are very close in every respect, with the likelihood of the unrestricted model

being greater, as we would expect. However, the restricted model has lower edf than the

original model (6.66 vs. 6.78) and also a lower AIC (-5.02 vs. -4.95) and BIC (13.08 vs.

13.48) score. This suggests that, based on any of the two criteria, the loss in flexibility

from constraining the first functional coefficient to be constant does not surpass the gain in

parsimony.
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Figure 5.1: Plots of GP estimated functional coefficients for (a) f1 and (b) f2 for the
Canadian lynx series, with constant f1.
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5.2 Model Selection

In this section we describe the use of the previously presented criteria for selecting a model

specification. Given a time series data set with no further information about the generating

process, we need to build a model that adequately describes its dynamics. In the context

of the FAR model we are working with, this amounts to specifying the regressor and func-

tional coefficient argument variables in Yt = f1(U
(1)
t )X

(1)
t + . . . + fp(U

(p)
t )X

(p)
t + εt. We

formalize the model selection procedure by only considering regressors from a fixed set of

possible variables {X (i)}P
i=1, and arguments from a fixed set of possible variables {U (j)}Q

j=1.

The two sets can be arbitrary, provided they include Ft−1 measurable variables so that the

conditional analysis carries through. The natural choice for autoregressive models is to use

lagged values of the series itself, without excluding other possibilities such as exogenous

variables. The total number of models we are facing in this case is 2PQ, allowing the same

regressors to appear more that once under different functional coefficient arguments. An

exhaustive search in this setting soon becomes prohibitive, since the possible number of

models we have to fit grows exponentially in both P and Q. There is an obvious need for a

faster model selection scheme, therefore we look at greedy model selection procedures. In

our case, the backward selection procedure is substantially more complicated because the

full model is very big. In order not to exclude any possibility, we would have to start from

a model with PQ terms; each of the P regressors X (i) must be multiplied with Q different

functional coefficients, one for each possible argument U (j). Moreover, the backward selec-

tion procedure, tends to give bigger models and requires significantly more computations.

For this reason, we propose a forward selection procedure: we start with an empty (zero

mean) model and at each step n of the algorithm we include the new term X (in)fn(U (jn))

that minimizes a criterion C, until there is no further improvement. More specifically, as-

suming we want to minimize some criterion C, either AIC or BIC, we use Algorithm 1.
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Algorithm 1 Forward model selection algorithm.

1. Initialize the index set I = {(i, j)|i = 1, . . . , P ; j = 1, . . . , Q} and set n = 0

2. Let M ∗
0 be the empty model and set C∗

0 equal to the criterion value for it.

3. For every k = (l,m) ∈ I, fit the model Mk : Y =
∑n

r=1 fr(U
(jr))X(ir) +

fn+1(U
(m))X(l) and calculate its criterion value Ck.

4. Find the optimal k∗ such that Ck∗ ≤ Ck, ∀k ∈ I. Set in+1 = l∗, jn+1 = m∗, C∗
n+1 =

Ck∗ , and let the optimal model at step n+ 1 be M ∗
n+1 = Mk∗ . Remove k∗ = (l∗,m∗)

from the index set I.

5. If C∗
n+1 ≥ C∗

n or I is empty, stop the algorithm and set the selected model equal to
M∗

n. Otherwise, set n = n+ 1 and go to 3.

At the nth step of this algorithm, we have to fit PQ−n different models, so the total number

of models we fit is approximately PQ times the order of the resulting specification. The

resulting model can have a regressor variable being multiplied with an additive function of

many arguments. By this, we mean that we can get specifications of the form

Y = f1(U
(1))X(1) + f2(U

(2))X(1) =
[
f1(U

(1)) + f2(U
(2))
]
X(1)

where the coefficient of X (1) is essentially an additive function of (U (1), U (2)). This can

be generalized to more complex settings. In particular, if we want to allow for a possi-

bly varying mean in the model, we can take X (1) to be a constant unity variable. Thus,

the selection procedure can produce additive models as well; we can get specifications

such as Y = f1(U
(1)) + f2(U

(2)) or hybrids between FAR and additive models, such as

Y = f1(U
(1))X(1) + f2(U

(2)).

The basic forward selection scheme can be modified in different ways. We propose an impor-

tant adjustment that replaces very smooth functional coefficients with constants, as in the

example of the previous section. This helps substantially in avoiding overfitting, speeding
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up the selection process and improving interpretability through simplifying the resulting

model. We introduce this modification at the third step of the selection procedure: for

each candidate model that we fit, we test whether any of its coefficients are constant. We

do this in a stepwise manner, we choose the flattest coefficient and refit a restricted model

with that coefficient being constant, where we identify the flattest coefficient as the one

with the minimum average deviation from its mean at the observed points. We compare

the criterion values of the two models and keep the best one, and we repeat this until there

is no further improvement. As a result, each of the candidate models at step three can have

some of its coefficients being constant. At step four we select the optimal model, and any

of its coefficients that is identified as constant at this point remains so for the subsequent

steps of the selection procedure. This means that all candidate models will have at least

the same constant coefficient as the most recent optimal model. The details are presented

more formally in Algorithm 2.

Although this modification seems to complicate the procedure, it can actually offer signif-

icant speed gains. These occur when we fit the candidate models, because we reduce the

parameter space by restricting some coefficients to be constant. As a result, the numerical

maximization of the marginal likelihood is faster and more stable. The basic forward model

selection algorithm can easily accommodate further modifications, an obvious one being the

inclusion of a backward step. For additional speed-up, we could allow regressors to appear

only once in the model, or we could allow only specific regressor-argument combinations

based on contextual knowledge.

5.2.1 Examples

We now give an example of our forward selection procedure applied to the Canadian lynx

data. For both regressors and arguments we consider lagged values of the series of order
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Algorithm 2 Forward model selection algorithm with constant coefficients.

1. Initialize the index set I = {(i, j)|i = 1, . . . , p; j = 1, . . . , q}, the constant coefficient
set J = Ø, and set n = 0

2. Let M ∗
0 be the empty model and set C∗

0 equal to the criterion value for it.

3. For every k = (l,m) ∈ I:

(i) Set Jk = J , fit the model Mk : Y =
∑n

r=1 fr(U
(jr))X(ir) + fn+1(U

(m))X(l) with
fr being constant for r ∈ Jk and calculate its criterion value Ck.

(ii) Find rc ∈ ({1, . . . , n + 1} − Jk) such that it minimizes
∑T

t=1[fr(U
(jr)
t ) − f̄r]

2,

where f̄r =
∑T

t=1 fr(U
(jr)
t )/T

(iii) Fit the model M c
k : Y =

∑n
r=1 fr(U

(jr))X(ir) + fn+1(U
(m))X(l) with fr being

constant for r ∈ Jk ∪ {rc} and calculate its criterion value C c
k.

(iv) If Cc
k ≤ Ck, set Ck = Cc

k, Mk = M c
k , Jk = Jk∪{rc}, and if there are non-constant

terms left, go to (ii). Otherwise proceed with a different k.

4. Find the optimal k∗ such that Ck∗ ≤ Ck, ∀k ∈ I. Set in+1 = l∗, jn+1 = m∗, C∗
n+1 =

Ck∗ , J = Jk∗ , and let the optimal model at step n + 1 be M ∗
n+1 = Mk∗. Remove

k∗ = (l∗,m∗) from the index set I.

5. If C∗
n+1 ≥ C∗

n or I is empty, stop the algorithm and set the selected model equal to
M∗

n. Otherwise, set n = n+ 1 and go to 3.

up to five, and we also include a unit regressor variable to allow for additive terms. The

selected model specification using AIC has three terms and is given by

Xt = f1(Xt−3)Xt−1 + f2(Xt−2)Xt−2 + f3(Xt−4) + εt

were f1 is a constant and f3 is very smooth. Fig. 5.2 shows the optimal model at the end of

each step of the model selection procedure and Table 5.2 gives information on the optimal

model at different steps. Notice that the first term f1(Xt−3)Xt−1 enters in the model with a

varying coefficient, but from the second step onward it becomes constant, the second term

absorbing most of the nonlinearity. We also performed the model selection procedure with

BIC as a criterion, and the resulting model includes only the first two terms of the AIC
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selected model. The plots of the coefficients are given in the second row of Fig. 5.2 and the

maximum BIC is presented in Table 5.2, for the second step. The BIC criterion generally

favors more parsimonious models because it imposes a heavier complexity penalty. We also

point out that the specification selected by BIC is almost the same as the one in section 2.6,

the difference in the first argument variable being negligible because the function is almost

constant.

Table 5.2: Information on forward model selection steps for the Canadian lynx data, with
1-5 candidate regressor lags.

step `(y) DF AIC BIC

1 -3.1180 4.1800 14.5960 25.8460
2 7.4584 6.5994 -1.7178 16.0436
3 9.8201 8.3587 -2.9227 19.5734

We also apply the forward selection procedure on a bigger set of regressors which contains

lagged series of up to order 15. We do this because the lynx series demonstrates an ap-

proximate ten year cycle, and also because the best linear AR model, selected by AIC, is

of order 11 (see Tong [113]). For the coefficient arguments we still use up to five lags. The

results of the selection based on AIC are shown in Fig. 5.3, and information on the criteria

are given in Table 5.3. This time the AIC criterion selects a bigger model of order four,

where the first term is the same as before, but the rest have regressors at higher lags. This

is not so surprising given that the series exhibits cyclic behavior, so higher lags can still

be informative. The BIC criterion again selects a smaller model with three terms, which is

identical to that of the third row of Fig. 5.3. Notice that the model in the third row has

less DF than the model in the second row, despite having more regressors. This is due to

the fact that the three term model has two constant functions, compared to none of the two

term model. Even though the selected models for the two different candidate regressor sets

seem very different, their fits are close. Moreover, the lynx series has only 114 observations

in total, and by conditioning on lags of up to 15 we reduce the actual number to 99. Besides
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Figure 5.2: Plots of forward model selection steps for the Canadian lynx data using AIC;
labels at the top of the plots indicate regressor variables and labels at the bottom indicate
argument variables.
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the fact that the procedures use slightly different data sets, there are not enough data to

provide robust selection results.

Table 5.3: Information on forward model selection steps for the Canadian lynx data, with
1-11 candidate regressor lags.

step `(y) DF AIC BIC

1 -1.4819 4.2826 11.5289 22.6427
2 13.1126 8.7879 -8.6493 14.1565
3 17.1014 7.9212 -18.3604 2.1960
4 21.7126 11.0749 -21.2752 7.4656

We also demonstrate the performance of our model selection procedure on two simulated

data sets, a nonlinear FAR model and a simple linear AR model. The dynamics of the

nonlinear model are given by the following equation

Xt = µ+ f1(Xt−2)Xt−1 + f2(Xt−1)Xt−3 + εt (5.3)

where µ = 2, εt
i.i.d∼ N (0, .52), f1(x) = .5 sin(2π(x − µ)/.3) exp{−2(x− µ)2} is an exponen-

tially decaying sinusoidal and f2(x) = −.5 tanh(x − µ) + .3 is a sigmoid; Fig. 5.4 shows a

realization of 500 observations from this model. We apply our model selection procedure

using the PP approximation with 10 equally spaced bases for each function, under both

BIC and AIC. For the regressors we allow up to seven lags plus a unity variable for additive

terms, and for the arguments we allow up to five lags. The BIC criterion manages to identify

the correct model specification and the resulting estimates are shown in Fig. 5.5, together

with the true coefficient functions. The mean of the series is represented as a constant func-

tion multiplied by the unity variable. The other two functions are actually varying, and

describe the shape of the true functions accurately. For the first two estimates, the true

functions fall slightly outside the 95% pointwise confidence intervals, but notice that they

do so in opposite ways. The mean level is higher and the first coefficient is more negative,

but since the series is always positive these effects partially cancel out for the conditional
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Figure 5.3: Plots of forward model selection steps for the Canadian lynx data using AIC;
labels at the top of the plots indicate regressor variables and labels at the bottom indicate
argument variables.
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mean of the process.
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Figure 5.4: Plots of 500 simulated observations from model (5.3).
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Figure 5.5: Estimated functional coefficients for the simulated data from model (5.3) using
BIC selected specification; grey lines represent true functions, labels at the top of the plots
indicate regressor variables and labels at the bottom indicate argument variables.

We present the results for the AIC criterion, which selected a four term specification of the

form Xt = f1 + f2Xt−3 + f3(Xt−2)Xt−3 + f4(Xt−2)Xt−1 + εt. The function estimates, in

order of appearance in the previous formula, are shown in Fig. 5.6. Note that the second

and third terms can be combined in one term [f2 + f3(Xt−2)]Xt−3 = f2,3(Xt−2)Xt−3, since



CHAPTER 5. IDENTIFICATION AND INFERENCE 117

both coefficients are multiplied with the same regressor Xt−3 and one is constant. At the

second step of the selection procedure the regressor Xt−3 was included in the model with

a function having Xt−2 as an argument, which was then set to constant and so became

independent of the argument. We can merge the two functions to get the correct specifi-

cation, which actually gives a lower AIC. We present this example in order to stress that

we should always check the results of the selection procedure to identify potential mergers

or simplifications of functions. Such redundancies can occur when a wrong combination of

regressor and argument is added to the model, whose coefficient becomes constant at later

steps. However, this problem is less frequent when we have more data. In fact, when we

rerun the selection procedure on a simulated set of 1000 observations from the same model,

we get the correct specification under both criteria and confidence intervals which include

the true functions.

Finally, we present a simulation experiment from a simple AR model. We generate 500

observations from the linear model

Xt = µ+ α1Xt−1 + α3Xt−3 + εt (5.4)

where µ = 2, α1 = .5, α3 = −.3 and εt
i.i.d∼ N (0, .52). We use the same possible regres-

sors and arguments, and the same reduced rank approximation as in the previous example.

This time, both AIC and BIC select the correct model specification with constant coefficient

functions for all terms. The resulting estimates are shown in Fig. 5.7, together with the true

coefficients which are captured by the confidence bands. Our model selection procedure is

capable of identifying a wide range of models with additive or multiplicative terms which

are constant or varying. Since the procedure can identify linear models, it is not imper-

ative to perform a nonlinearity test before applying it. If the selection algorithm gives a

linear specification, we can either keep the fitted model or reestimate it using conventional
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Figure 5.6: Estimated functional coefficients for the simulated data from model (5.3) using
AIC selected specification; labels at the top of the plots indicate regressor variables and
labels at the bottom indicate argument variables.

frequentist procedures. For large data sets all methods give similar results, but for small

data sets it is better to avoid conditioning on initial values, as does our empirical Bayes

approach, and use the exact MLEs. Under the approximate inference scheme, our model

selection procedure becomes not just feasible but also practical to implement, even for large

data sets. This makes it an attractive alternative to other parametric and nonparametric

methods.

5.3 Residuals

We now discuss the specification of our model’s residuals and their use as a diagnostic tool.

The simple fitted residuals et = yt − ŷt are defined as the difference between the observed
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Figure 5.7: Estimated functional coefficients for the simulated data from model (5.4) using
either AIC or BIC selected specification; grey lines represent true functions, labels at the
top of the plots indicate regressor variables and labels at the bottom indicate argument
variables

series and the model’s fitted values, given by (5.1). However, these residuals disregard

estimation uncertainty, which can be significant since our model assumes the coefficients

are random. We can account for this by using the normalized residuals

ẽt =
yt − ŷt

√

σ2 + Var[Zt|y,x,u]
, t = 1, . . . , T

where the normalization uses the posterior variance of the conditional mean Zt of the obser-

vations. Under the assumption that the model is correct, these residuals should approximate

a white noise sequence. Nevertheless, for nonlinear and/or non-Gaussian time series models

the use of the universal residuals is more appropriate; e.g. see Smith [108] and Gerlach et

al. [40]. These are defined as the quantiles of the recursive one-step-ahead predictive dis-

tributions, according to the transformation originally proposed by Rosenblatt [97]. Letting

y<t,x<t,u<t denote all the data up to time t− 1, the universal residuals are given by

vt = P (Yt ≤ yt|y<t,x<t,u<t), t = 1, . . . , T
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For our model, the one-step-ahead predictive distribution is normal with moments that can

be computed efficiently using online estimation, for either the exact or the approximate

method. Under the correct model for the data, the universal residuals constitute an i.i.d.

sample from a uniform distribution and goodness of fit tests can be performed based on

this result. The result relies on the assumption that the true parameters of the model are

known, but it should hold approximately even if they are to be estimated from the data.

For practical purposes, we can equivalently use the inverse normal probability transform

rt = Φ−1(vt) of the universal residuals to create a sample of i.i.d. N (0, 1) variables. These

are called recursive residuals and are commonly used for conditionally Gaussian models,

where rt can be easily computed in terms of the one-step-ahead predictive moments as

rt =
yt − E[Yt|y<t,x<t,u<t]
√

Var[Yt|y<t,x<t,u<t]
, t = 1, . . . , T

In particular, this is the standard definition of residuals for Kalman filtering and more gen-

eral state-space models, e.g. see section 5.4 in Harvey [54] or Frühwirth-Schnatter [39]. For

the remainder we focus on the use of the recursive residuals.

As a preliminary graphical method for assessing fit, we always plot the residuals of a model

versus time, as well as versus the different regressor and argument variables. This helps

to identify outliers and systematic patterns which can suggest improvements to the model.

Furthermore, we use the recursive residuals to perform various quantitative tests for the

model’s fit. Essentially, all diagnostic tests which are useful for linear time series are also

applicable in our case. There are various assumptions we can look at: for normality we

can use the Jarque-Bera [63] or Shapiro-Wilk [104] tests, for uncorrelatedness we can use

the portmanteau test of Ljung and Box [77] and for independence we can use the test of

McLeod and Li [82] on the square residuals. We can also apply general goodness of fit tests

or Q-Q plots against the exact N (0, 1) distribution assumption of the residuals.
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When working with time series, it is important to ensure that a model remains valid across

time and the recursive residuals also serve in detecting structural changes through the use of

CUSUM procedures. The basic CUSUM test relies on the rescaled cumulative sum process

of the residuals Wt =
∑t

s=1 rs/
√
T for t = 1, . . . , T , which approximates a Brownian mo-

tion under the assumption that rt
iid∼ N (0, 1). In order to identify a systematic shift in the

mean of the series, Brown, Durbin and Evans [15] suggest plotting the process and checking

whether it crosses certain linear bounds. The linear bounds are derived from the crossing

probabilities of Brownian motion; for .05 significance level, in particular, the authors sug-

gest slopes of ±1.89/T and intercepts of ±.94. Petruccelli and Davies [93] use the same

idea to perform nonlinearity tests for TAR model identification. First, they reorder the data

according to a potential threshold variable and compute the recursive residuals by fitting a

linear model along this ordering, instead of the natural time ordering. They thus construct

the CUSUM process, and if its maximum exceeds a certain level the linear model is deemed

inadequate, which implies the presence of nonlinearity with respect to the ordering variable.

As a refinement, Petruccelli [92] suggests summing the residuals in reverse order (because

the highest deviations should appear later) and comparing the maximum of the reverse

CUSUM process to linear bounds. Although Petruccelli gives slightly different bounds, we

can still use the previous bounds of Brown, Durbin and Evans, since both tests rely on the

same Brownian motion asymptotics. We apply the two CUSUM procedures to our model

for detecting structural changes through time or excess nonlinearity with respect to lagged

variables. If the Petruccelli and Davies test is rejected when the residuals are computed

along a variable that already appears as an argument to a nonlinear function, this would

suggest that the function is too smooth; if the variable does not appear in the model, it

would suggest that it could be included as an argument in a nonlinear term. However, an im-

portant limitation of such CUSUM tests is that they can only pick up systematic departures
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from the assumptions. For example, they will have small power against situations where the

mean of the residuals oscillates between positive and negative values of the same magnitude.

Finally, we use a variation of the CUSUM procedure for detecting heteroskedasticity or

more general lack of fit. We look at the cumulative sum of squares (CUSUM-SQ) test,

originally proposed in Brown, Durbin and Evans [15]. As the name suggests, the CUSUM-

SQ test relies on the cumulative sum of square residuals, Vt =
(∑t

s=1 r
2
s

)
/
(∑T

s=1 r
2
s

)
− t/T

for t = 1, . . . , T . Inclán and Tiao [62] further develop the procedure, and show that under

the usual assumptions on the recursive residuals, Vt converges to a Brownian bridge. They

propose the maximum deviation test statistic Q =
√

T/2 maxt |Vt| for which they provide

simulated quantiles and the theoretical asymptotic distribution

P (Q ≤ c) = 1 + 2
∞∑

k=1

(−1)k exp
{
−2k2b2

}
(5.5)

The limiting distribution is the same as for the Kolmogorov-Smirnov test and the .95 quan-

tile, in particular, is 1.358. Similar to the CUSUM procedure, it is instructive to plot the

CUSUM-SQ process Vt versus time and lagged variables, in order to identify departures.

We demonstrate the use of these diagnostic tools on the residuals of the second order FAR

model (2.30) that we fit to the Canadian lynx data in section 2.6. Fig. 5.8 presents plots

of the (standardized) fitted, normalized and recursive residuals versus the time and versus

the common coefficient argument Xt−2. As we would expect from their definition, the

recursive residuals are more diffused in the beginning, when they are based on less data,

and converge to the fitted and normalized residuals toward the end. Moreover, the second

plot implies that the residuals might increase in variance with Xt−2. Table 5.4 gives p-

values for normality and whiteness tests applied to the recursive residuals, which do not

show significant departures from the assumptions. We also present plots of the CUSUM and
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CUSUM-SQ processes in Fig. 5.9 and Fig. 5.10, respectively. Again, we plot the processes

against time and Xt−2, and we give 95% confidence bands based on their approximating

distributions. We do not witness significant departures in any of the processes, although

we point out that we have too few observations for the procedures to be powerful.

Table 5.4: P-values of diagnostics tests applied to the recursive residuals of model (2.30) fit
to the Canadian lynx data.

Normality Whiteness

Jarque-Bera 0.4795 Ljung-Box 0.1142
Shapiro-Wilk 0.5287 McLeod-Li 0.1236
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Figure 5.8: Plots of standardized, normalized and recursive residuals of model (2.30) fit to
the Canadian lynx data versus (a) time, and (b) Xt−2.

5.4 Dynamics and Stability

The estimates of the coefficient functions define the properties of the fitted model in ways

which are not always obvious. When dealing with time series it is important to understand

and characterize a model’s dynamic behavior and, in particular, its stability. There are vari-
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Figure 5.9: Plots of CUSUM process of model (2.30) fit to the Canadian lynx data, versus
(a) time, and (b) Xt−2; (- -) 95% confidence bands.
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Figure 5.10: Plots of CUSUM-SQ process of model (2.30) fit to the Canadian lynx data,
versus (a) time, and (b) Xt−2; (- -) 95% confidence bands.

ous flavors of stability but we will be interested in stationarity and ergodicity, which roughly

imply that the process does not change its statistical properties with time. These two prop-
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erties afford a sensible use of the model for making future predictions and for applying

simulation to study its behavior. Naturally, we only look at models that are self-contained

and do not include exogenous variables, which for the main part means Markovian models.

Time series regression on exogenous variables describes the cross-sectional relation of the

data, so there is not much we can say about the evolution of the process. Specifically, such

models cannot be used for forecasting or simulation without additional information about

the evolution of the exogenous variables.

For Markov models, we have already presented in Theorem 4.6 conditions on the functional

coefficients and the error term which guarantee geometric ergodicity. As we pointed out,

these conditions are only sufficient and rather strict, so they are often expected not to

hold. As an alternative way of examining stability we look at the deterministic part of

the conditional mean equation, what Tong [114] calls the skeleton of the model. This is

essentially a nonlinear difference equation, also known as a recurrence relation, which is

fundamental for the properties of its stochastic counterpart. For example, the stationarity

of a linear Gaussian time series is uniquely determined by the stability of its corresponding

homogeneous linear difference equation. However, nonlinear difference equations exhibit

extremely diverse and frequently chaotic behavior and there is no systematic way of solving

them analytically. Tong suggests plotting trajectories for different plausible starting values

from a fitted model’s deterministic skeleton as a graphical diagnostic tool. These trajec-

tories can be plotted against time, but it is also instructive to plot them in phase space,

i.e. the space in which all possible states of a system are represented, which in our case is

the space of all regressor and argument variables. When the phase space has more than

three dimensions, we can still plot the trajectories in two dimensional planes of important

variables, for example the space of the current and lag-one values. These plots are very

informative for the dynamical structure of the nonlinear system and especially for revealing
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periodic patterns such as limit cycles. We have already given an example of such a plot in

Fig. 2.9 for the Canadian lynx data. If the trajectories of the system are not explosive, this

is a good indication that the stochastic model is also well behaved. For this last point, the

distribution of the error term plays an important role. There are examples of linear AR(1)

models with α > 1 and exponential errors which are stationary (see Grunwald et al. [48])

and with 0 < α ≤ 1/2 and Bernoulli errors which are not strong-mixing (see Andrews [2]),

where α is the autoregressive coefficient. However, such situations can be avoided when the

error term distribution is absolutely continuous with respect Lebesgue measure on R, and

this is what we typically require for our model as well.

An alternative way of examining the dynamic properties of a model is through impulse

response functions. This approach is common in control theory and econometrics, and is

especially usefully when dealing with multivariate data. The impulse response function

quantifies the effect of a shock on the evolution of a system. Formally, the impulse response

function of a Markov model Yt = F (U t)X t + εt is defined as

IRF (n; δ,Ft−1) = E[Yt+n|εt = δ, εt+1 = 0, . . . , εt+n = 0,Ft−1] −

E[Yt+n|εt = 0, εt+1 = 0, . . . , εt+n = 0,Ft−1]; n = 1, 2, . . .

where δ is the shock size and Ft−1 is the filtration of all the information up to time t−1. For

nonlinear models, Koop et al. [70] suggest using the generalized impulse response function,

defined as

GIRF (n; δ,Ft−1) = E[Yt+n|εt = δ,Ft−1] − E[Yt+n|Ft−1]; n = 1, 2, . . .

where the effect of the future errors is averaged out instead of fixed to zero, and the con-

ditional means can be calculated with Monte Carlo methods. The two definitions are
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equivalent for linear Gaussian models, but for more general models the authors claim the

latter approach is better in treating the future. In either case, plots of the impulse response

function demonstrate different aspects of the model such as shock persistence and asym-

metric effects, and they are a useful diagnostic tool. We give an example of their use in the

application of section 6.3.

Finally, we can use simulation for exploring the properties of a fitted model. Similar to the

trajectories of the deterministic skeleton, we can create paths from the stochastic version

of the model and plot them versus time or in phase space. We also suggest looking at

estimates of the autocorrelation function (ACF) and/or the spectral density of the simulated

process, and comparing it to the that of the original data. The spectral density summarizes

information on second order properties, so it is helpful for describing the autocorrelation

structure of a fitted model. Gaussian processes are uniquely determined by their second

order properties, but for more general processes this is not true and one can also use higher

order periodograms or spectra, see for example Brillinger [13]. Lastly, simulation serves

in investigating the probabilistic aspects of the fitted model, by looking at histograms or

density estimates of its stationary distribution and/or multivariate distributions of lagged

variables. We demonstrate the use of such methods in the application of section 6.1.



Chapter 6

Applications

6.1 Wölf’s Sunspot Numbers

6.1.1 Introduction and Review

Our first application concerns the classic Wölf sunspot data which, like the Canadian lynx

data, has attracted a lot of attention in the nonlinear and nonparametric time series litera-

ture. The data consist of an annual measure of solar activity that was devised by Rudolph

Wölf in 1848, and which is based on the number of spots on the face of the sun. Even

though much more sophisticated measures exist today, they are still of value because no

other index of the sun’s activity reaches into the past as far and as continuously. There are,

however, some issues about the quality and consistency of the data through time, because

earlier measurements were based on observations from the Earth and were to a certain ex-

tent subjective. The particular data set we work with spans the years 1700 to 2006, giving

a total of 307 observations, and is available online at the website of the National Geophys-

ical Data Center 1. The sunspot numbers are shown in Fig. 6.1(a), and they exhibit an

approximate 11.1 year cycle which is asymmetrical. It takes around 4.8 years to rise from

1ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/YEARLY.PLT

128
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a minimum to a maximum and another 6.2 years for the opposite.
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Figure 6.1: Wölf’s annual sunspot numbers, 1700 to 2006; (a) original and (b) square root
transformed data.

An early nonlinear analysis of these data was carried out by Tong [114], followed by non-

parametric analyses by Chen and Tsay [22] and Cai, Fan and Yao [16]. In all of these,

the square root transform 2(
√

1 + x − 1) was applied to stabilize the variance, and the

transformed series is presented in Fig. 6.1 (b). Moreover, only the first 280 observations

(from 1700 to 1979) were used in these analyses. We give a brief description of the models

involved. Tong [114] suggests the following two regime TAR model

Xt =







1.92 + .84Xt−1 + .07Xt−2 − .32Xt−3 + .15Xt−4

−.2Xt−5 + .19Xt−7 − .27Xt−8 + .21Xt−9

+.01Xt−10 + .09Xt−11 + ε
(1)
t , if Xt−8 ≤ 11.93

4.27 + 1.44Xt−1 − .84Xt−2 + .06Xt−3 + ε
(2)
t , if Xt−8 > 11.93

(6.1)

Chen and Tsay [22] first employ various nonlinearity tests which suggest that the process is
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indeed nonlinear. From these tests they identify Xt−3 as the argument variable and use lags

1, 2 and 8 to fit the model Xt = f1(Xt−3) + f2(Xt−3)Xt−1 + f3(Xt−3)Xt−2 + f4(Xt−3)Xt−8

with arranged local regression (ALR). After visually inspecting the form of the estimated

functions, they specify a parametric model which combines a threshold effect with varying

coefficients. Specifically, they use conditional least squares to fit the model

Xt =







1.23 + (1.75 − .17|Xt−3 − 6.6|)Xt−1

+(−1.28 + .27|Xt−3 − 6.6|)Xt−2 + .2Xt−8 + ε
(1)
t , if Xt−3 < 10.3

.92 + .87Xt−1 + .17Xt−2 − .24Xt−3

+.06Xt−6 + .04Xt−8 + ε
(2)
t , if Xt−3 ≥ 10.3

(6.2)

Cai, Fan and Yao [16] apply local linear regression (LLR) for nonparametric estimation of

the functional coefficients. They use multifold cross validation to select both the bandwidth

and the model specification, i.e. the argument and regressor variables. For the weighting

scheme, they use the Epanechnikov kernel Kh(u) = (1 − (u/h)2)+, and their selection

procedure looks through all models with argument lags and autoregressive order from one

to 11. They pick Xt−3 as the argument and Xt−1 to Xt−8 as regressors, but they combine

their results with the previous model of Chen and Tsay to reduce the fitted model to

Xt = f1(Xt−3)Xt−1 + f2(Xt−3)Xt−2 + f3(Xt−3)Xt−3

+f4(Xt−3)Xt−6 + f5(Xt−3)Xt−8 + εt (6.3)

For this specification, the optimal bandwidth is h = 4.75, and the estimated functional

coefficients are presented in Fig. 6.2 with dashed lines. The estimates exhibit an obvious

instability near the endpoints of the argument’s observed range, especially to the right.

The reason is that very little data falls within the kernel’s support, and the resulting local

linear regression is ill conditioned. At each point in the argument space, we need to fit a 10
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dimensional linear system, since each of the five coefficient functions contributes a constant

and a linear term from its Taylor expansion. To correct this instability, we make a slight

modification of the kernel. We use Kh(u) = .01 + (1 − (u/h)2)+, so that every local linear

system is stable by assigning a minimal weight to all observations. This correction is also

important for extrapolating the function, a need that arises in simulation. The Epanech-

nikov kernel has compact support, so any evaluation beyond a bandwidth’s length from the

observed range is undefined. In contrast, our adjustment offers stable predictions in this

case, through equally weighting all of the data. The estimated functions under our modified

kernel are presented in Fig. 6.2 with solid lines. Where the main body of data lies, the two

estimates are practically indistinguishable. However, the modified kernel gives more stable

results at the endpoints, were it converges to the global linear estimates of the functional

coefficients. For the rest of the example, we use the modified kernel for LLR.

For completeness, we also look at the regression splines method of Huang and Shen [60].

We apply their suggested procedure for selecting the number of knots and the model spec-

ification using AIC. First, we fix a number of knots and argument lag for all coefficients,

and then create a sequence of models by stepwise addition and deletion of regressor lags.

In more detail, we begin with an empty model and start adding terms from a regressor

candidate set in the model by minimizing the MSE in a stepwise fashion. When all possible

terms have been added, we start a backward procedure of stepwise deletion of terms till

we reach the empty model, again using MSE. In the end, we are left with a sequence of

models from which we select the one with the smallest AIC. We repeat this procedure for all

possible numbers of knots and argument lags, and the final model is the one that minimizes

the overall AIC. For this application, we use cubic B-splines with quantile spaced internal

knots. The candidate set for the number of internal knots is {1, . . . , 6} and the candidate

set for both argument and regressor lags is {1, . . . , 11}. The procedure selects a model with
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Figure 6.2: Functional coefficient estimates for model (6.3) using LLR, (—) modified kernel,
(- -) Epanechnikov kernel.

one internal knot Xt−2 as the argument and five regressor variables

Xt = f1(Xt−2)Xt−1 + f2(Xt−2)Xt−2 + f3(Xt−2)Xt−3

+f4(Xt−2)Xt−9 + f5(Xt−2)Xt−11 + εt (6.4)

The estimated functions using splines are presented in Fig. 6.3. Finally, we also provide the

simple linear AR model selected by AIC

Xt = 10.79 + 1.22Xt−1 − .48Xt−2 − .16Xt−3 + .28Xt−4 − .25Xt−5

+.02Xt−6 + .17Xt−7 − .22Xt−8 + .3Xt−9 + εt (6.5)
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Figure 6.3: Functional coefficient estimates for model (6.4) using splines.

6.1.2 Estimation Using GPs

We apply our GP methodology to the sunspot data using the first 280 observations, in

accordance with the other models. We choose the model specification with our forward

selection algorithm, also testing for constant coefficients. The candidate set of argument

and regressor variables contains lags one to 11, and we also include a unit regressor variable

to allow for additive terms. To speed up model selection, we use a PP reduced rank

approximation with 10 bases. However, the resulting model we present is estimated with

the exact method. Both AIC and BIC give similar specifications with three terms, where

the BIC model is simpler, having two constant coefficients. Nevertheless, we prefer the

AIC model because it gives substantially better residual behavior. Our selected model
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specification is

Xt = f1(Xt−3)Xt−1 + f2(Xt−1)Xt−5 + f3(Xt−2)Xt−7 + εt (6.6)

and the optimal parameters, i.e. the error variance σ and each coefficient’s prior mean µ and

characteristic lengthscale h, are given in Table 6.1. The estimated functional coefficients for

model (6.6) are presented in Fig. 6.4. Compared to the previous nonparametric estimates,

our estimates are less variable, taking on a smaller range of values. Moreover, our model

has different arguments for the functional coefficients and fewer terms.

Table 6.1: Selected parameters for model (6.6) fitted to the sunspot data.

f1 f2 f3

σ 1.906 µ1 0.972 µ2 0.261 µ3 -0.282
h1 11.051 h2 9.818 h3 7.985

` = -582.0164, AIC = 1194.188
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Figure 6.4: Functional coefficient estimates of model (6.6) using GP regression.

We look at the model residuals and present several diagnostic checks. The recursive resid-

uals are plotted in Fig. 6.5 versus time and Xt−1. There are some obvious outliers in the

data with values beyond the (-2,2) band, and they occur for lower values of Xt−1, suggest-
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ing there is greater variability when the series moves at the minimum of its cycle. We also

present the p-values for several diagnostic tests on the recursive residuals in Table 6.2. The

normality assumption is strongly rejected in the presence of the outliers, but there is not

significant evidence of residual correlation. We also plot in Fig. 6.6 the CUSUM processes

versus time and Xt−1, which do not exhibit departures from their hypothetical bounds. We

do the same for the CUSUM-SQ processes in Fig. 6.7, and here there is clear indication that

the squared residuals are systematically higher for lower levels of Xt−1. This heteroskedas-

tic pattern appears for the other models’ residuals as well, so a possible way to address

it would be to apply a different transformation to the data. Finally, we use simulation

to assess the stability and dynamics of the model. The conditions of Theorem 4.6 on the

bounds of the functional coefficient are not satisfied, because the bound on f1 is greater

than one. This does not mean that the model is explosive, though, since the conditions

are only sufficient. We check for stability by simulating paths from the fitted FAR model,

treating the posterior mean functions as our fixed functional coefficient estimates and using

normal errors with the selected variance. We generate 1000 paths of 1000 observations

each, and none of them is explosive, suggesting that the fitted model is stationary. In

Fig. 6.8 we present estimates of the ACF and the spectral density of one of the simulated

paths and the sunspot numbers, which we use for comparing their second order properties.

Even though our model has only three terms, its ACF seems to follow that of the data

for lags up to 30. Moreover, our model’s periodic behavior is in accordance to the 11 year

cycle of the sunspot data, confirmed by its spectral density’s peak around the .09 frequency.

Table 6.2: P-values of diagnostics tests applied to the recursive residuals of model (6.6).

Normality Whiteness

Jarque-Bera 8.47 ×10−7 Ljung-Box 0.14800
Shapiro-Wilk 0.00165 McLeod-Li 0.08425
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Figure 6.5: Recursive residuals of model (6.6) versus (a) time, (b) Xt−1.
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Figure 6.6: Plots of CUSUM process of model (6.6) versus (a) time, and (b) Xt−1; (- -) 95%
confidence bands.

6.1.3 Model Comparisons

The six alternative models we have presented so far appear very different. They have a

wide range of argument/threshold variables, regressor variables and functional coefficient

forms. However, as can be seen from Fig. 6.9, in terms of fit all models are quite close, the

biggest differences arise at the peaks and troughs of the series. To better distinguish their
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Figure 6.7: Plots of CUSUM-SQ process of model (6.6) versus (a) time, and (b) Xt−1; (- -)
95% confidence bands.
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Figure 6.8: Simulation diagnostic plots for model (6.6): (a) acf, and (b) spectral density.

dynamics, we present in Fig. 6.10 the skeleton plot of each one in (Xt, Xt−1)-space. The

initial state is that of the data in 1979, and the length of the trajectories is 200 years. All

models exhibit cyclical behavior, but only the TAR, LLR and our GP model have sustained

cycles, where the TAR model seems to have a smaller circumference. The AR and spline

models converge to a stable point, and the ALR model has a strange type of periodic be-
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havior with irregular cycles. Of course the behavior depends on the initial state, but trials

with other reasonable starting points give similar results.

1900 1920 1940 1960 1980
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SPL
GP

Figure 6.9: Fitted values from all six models, 1900 to 1979; dots represent true values.

Next, we test the predictive performance for each model. We refit each of the six models to

the first 200 data points, and use the results to make iterative predictions for the remaining

80. We look at one- to 25-step-ahead predictions on a rolling basis, i.e. starting from X200

we predict X201 to X225, starting form X201 we predict X202 to X226 and so on. When

refitting the models to the initial 200 observations, we just reestimate the coefficient func-

tions. In particular, the model specification and the hyperparameters or threshold values

are unchanged. We calculate the mean absolute prediction error (MAPE) for each model

and lead time, which are presented in Fig. 6.11. Some characteristics are similar across

models, they are all very close in one-step-ahead predictions and they seem to deteriorate

after the passing of a period, i.e. at lead times 11 and 22. For one- to 11-step-ahead pre-

dictions, there is no model that clearly dominates, with GP, ALR and splines giving lower

MAPE at different times. Moreover, the simple AR model provides good prediction for
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Figure 6.10: Plots of phase space trajectories for the dynamics of the six models fitted to
the sunspot data; initial state is that of 1979, gray lines represent the observed trajectory.

this range. For longer term predictions, however, the GP model gives lower errors, with

TAR and LLR being second closely together. The AR model deteriorates the most after

the first period, probably because its iterative predictions converge faster to its stable point.

Finally, we make predictions for the 27 observations of the period 1980-2006, which were

not used in the model fitting. Besides iterative predictions, we also employ simulation to

approximate the distribution of future sunspot numbers. We use normal errors with vari-

ances given by the RSS (in the TAR and ALR models we use a separate variance for each

regime), except for GP where we use the fitted variance parameter. We generate 10000
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Figure 6.11: Mean absolute error of iterative predictions versus lead time for the observa-
tions from 1900 to 1979, where all six models were fit over the period from 1700 to 1899;
dashed line represents the mean absolute error from using the mean of the data as the
prediction.

paths for each model, and calculate the median and 95% bands of the simulated predictive

distributions. These are presented in Fig. 6.12, together with the iterative predictions and

the true data points. For the splines model, about 5.8% of the paths were explosive, in

the sense that they went beyond 50 in absolute value, and were removed. Thus, the sim-

ulated confidence intervals for splines have a downward bias. This problem was caused by

large coefficient values outside the observed range of the data, where the splines extrap-

olate linearly. In the AR model, the iterative predictions are the same as the median of

the predictive distribution, which is normal and known explicitly. For all other models,

the medians of the distributions seem shrunk toward the series mean, and do a little worse

than the iterative predictions. Another common characteristic is that the lower part of

the confidence bands seems too wide. In particular, the predictive distributions allow for

negative values, which are impossible for the data at hand. Our use of normal errors is

a simplification, and a different data transformation, or models which are faithful to this
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asymmetry, might be preferable. Overall, all models capture the observations within their

confidence bands, but the LLR and AR model give the closest point predictions in terms of

absolute error, followed by our model.
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Figure 6.12: Monte Carlo predictive distributions for the sunspot data from 1980 to 2006,
for all six models; (—) median, (· · ·) 95% confidence bands,(- -) iterative predictions, dots
represent true data .

We conclude this example with some remarks. Although the sunspot series exhibits obvious

nonlinearity, the simple linear AR model does relatively well for short term predictions. For

long-term predictions and for capturing the dynamics of the series, however, there is a

need for nonlinear models. Our method provides a parsimonious specification, with only

three terms and simple forms for the estimated functional coefficients. Additionally, our
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model seems to perform slightly better than the alternatives in describing the dynamics

and for making long term predictions. In terms of fit and of stochastic behavior, there

is room for improvement, not least because the data are non-negative but are treated as

real. Nevertheless, our model gives good results and avoids some of the pitfalls of the

other nonparametric methods. Specifically, our method is well suited for extrapolating the

coefficients and for giving stable models.
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6.2 Nonlinear Vector Error Correction Model

6.2.1 Introduction and Data Description

In this section we give an example of our methodology in a multivariate setting. Our goal

is to model a bivariate series of a stock index and a futures contract on the index. A stan-

dard approach is to use a linear vector error correction model (VECM) for representing

the dynamics of the series. We briefly describe this model and the closely related con-

cept of cointegration, which were formally introduced in the seminal paper of Engle and

Granger [35]. Two time series {Y1,t, Y2,t} are called cointegrated of order one, if each of

them is integrated of order one (i.e. their first difference ∆Y·,t = Y·,t − Y·,t−1 is stationary)

and there exists a linear combination Zt = a1Y1,t + a2Y2,t that is stationary. The linear

combination a1Y1,t +a2Y2,t expresses an equilibrium relationship between the two variables.

This interpretation follows from the fact that {Zt} will revert to its mean infinitely often

due to stationarity, and for this reason the variable Zt is called the cointegration error term.

Letting Y t = [Y1,t, Y2,t]
>, and under some regularity conditions, the Granger representation

theorem states that we can represent the dynamics of ∆Y t as

∆Y t = a0 +
∑

i≥1

Ai∆Y t−i + bZt−1 + εt

where the {Ai}i≥1 are 2× 2 matrices, a0, b ∈ R2, and {εt} is a two-dimensional white noise

sequence. This is similar to a vector autoregressive model for {∆Y t}, with the difference

that the error correction term bZt−1 forces the two series to revert to equilibrium.

A standard example of cointegrated time series is an asset’s spot and futures log-prices.

The theoretical price of a futures contract is given by a no arbitrage argument using the

cost-of-carry model. This refers to the strategy of buying and holding the asset until the

futures contract expires. The absence of arbitrage requires that the current price of the
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futures contract is equal to the discounted cost of the strategy. Brenner and Kroner [12]

give a more detailed discussion of the cost-of-carry model together with empirical results

in support of cointegration. Let St denote the asset’s price at time t, and Ft,τ denote the

the futures price at time t for a contract expiring at some later time τ . The cost-of-carry

model we use states that

Ft,τ = St exp{(rt,τ − qt,τ )(t− τ)}

where rt,τ , qt,τ are the risk-free interest and asset dividend rates over the period (t, τ). For

real data the relationship is not exact, so we define the mispricing error term as

Zt = lnFt,τ − lnSt − (rt,τ − qt,τ )(t− τ) (6.7)

The deviations of Zt from zero can be attributed to transaction costs, short-selling restric-

tions and interest rate risks, among others. The implicit assumption leading to the VECM

is that {Zt} is stationary. Conceptually, if the error term moves away from zero, arbitrage

opportunities will present themselves and market participants will offset the discrepancy by

taking advantage of these opportunities. In the simple VECM, the error correcting inten-

sity, as represented by the coefficient b of the error term, is constant. In practice, however,

arbitrage positions are entered only when the price discrepancy is significantly large, be-

cause of the costs and risks entailed in such positions. This observation suggests that the

error correcting intensity should not be constant, in particular it should be weaker when

the error term is close to zero and stronger when it is far from zero. We try to capture this

type of behavior with a nonlinear VECM.

The data for this application come from Martens, Kofman and Vorst [79], and are available
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online at the data archive of the Journal of Applied Econometrics 2. They consist of the

S&P 500 index throughout May and November 1993, and the matching futures prices for

contracts maturing in June and December 1993, respectively. Minute-by-minute log-returns

were calculated from records of the exchanges these assets are traded in, and the first ten

observations within each day are discarded, giving approximately 379 observations per day.

This was done because of sparse trading activity in the beginning of the day, and in order

to avoid overnight returns. For the error term, the daily US discount rate between banks

was used, and the dividend rate was calculated using the daily realized dividends, as re-

ported by Standard and Poors. The resulting time series consist of 7060 observations for

May and 7693 observations for November. In Fig. 6.13 we present May’s data for all three

variables. In what follows, these series are treated as if trading was uninterrupted. By this

we mean that, when we condition on the past of an observation, we make no distinction as

to whether the previous observations come from the same trading day or from the previous

one. This is not the best course of action, but it is what other authors did when analyzing

the data. Moreover, this problem arises only when dealing with the first few observations

out of around 379 within each trading day, so we hope its effect is limited.

6.2.2 Threshold Vector Error Correction Models

The most common approach in the literature to model nonlinear error correcting behavior

is through a threshold VECM (TVECM). The general framework is given by Balke and

Fomby [4], but we present the particular estimation procedure of Martens, Kofman and

Vorst [79]. Letting Y t = [lnFt,τ , lnSt]
>, the TVECM is given by

∆Y t = a
(j)
0 +

p
∑

i=1

A
(j)
i ∆Y t−i + b(j)Zt−1 + ε

(j)
t ; if cj−1 < Zt−d ≤ cj , j = 1, . . . , J (6.8)

2http://qed.econ.queensu.ca/jae/1998-v13.3/martens-kofman-vorst/
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Figure 6.13: Plots of (a) ∆ lnFt,τ in % points, (b) ∆ lnSt in % points and (c) Zt, for May
1993.

The TVECM allows for different error correcting behavior in different regimes. Fitting the

model involves estimating the threshold lag d for the threshold variable Zt−d, the number

of regimes J , the value of the thresholds cj , and the values of the parameters a
(j)
0 , A

(j)
i ,

b(j) and Σ(j) = Cov[ε
(j)
t ] for each regime. We do not discuss estimation of the cointegrating

vector, i.e. the coefficients in the stationary linear combination Zt = a1 lnFt,τ + a2 lnSt −

(rt,τ − qt,τ )(t − τ). The authors show that when they are estimated in the linear VECM,

they are very close to the theoretical values of a1 = 1, a2 = −1, so they use the error term

as defined in (6.7). Their estimation procedure is roughly divided in two parts, each one

involving different data. The first part estimates all parameters related to the thresholds

by examining the mispricing series, while the second part selects the linear autoregression
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parameters within each regime, using all of the data. In the first part, the authors fit the

TAR model

Zt = φ
(j)
0 +

p
∑

i=1

φ
(j)
i Zt−i + ε

(j)
t ; if cj−1 < Zt−d ≤ cj , j = 1, . . . , J (6.9)

to the error series, using the four step methodology proposed by Tsay [116]. First, they

select the AR order p using the PACF and propose the set S = {1, 2, 3, 4} for candidate

values of the delay parameter d. Then, they fit an arranged autoregression for a given p and

every element of S, for each of whose residuals they perform an F -type nonlinearity test.

From these tests they keep the delay parameter d? with the smallest p-value. The third step

is about selecting the number and location of the thresholds. This is a difficult task because

possible criteria (likelihood, sum of squared errors) are piecewise discontinuous with respect

to the threshold values. A nonparametric arranged autoregression for the chosen d? is used

to establish a collection of potential thresholds. This is done by visual inspection of the

plots of the estimated coefficients, as well as their t-ratios, against the threshold variable

Zt−d? . Potential thresholds are identified by the presence of abrupt changes in these plots.

The last step is a refinement step, where the authors consider two competing specifications,

a three and a five regime model. For each model, the thresholds are chosen using a grid

search among the potential thresholds from part three, by minimizing the aggregate sum of

squares across regimes. The final choice is given by a likelihood ratio test in favor of the five

regime model. At the second part, the same regime specification is used for the TVECM

model, and the parameters are estimated through least squares. The autoregressive order

within each regime and for each coordinate of ∆Y t is variable. It is decided based on the

maximum significant lag at the 10% level, with a minimum lag of one. The constant and

error correction coefficients are also included by default, irrespective of their significance

level. The fitted models for May and November, using the procedure of Martens, Kofman

and Vorst, are presented in Table 6.3 and Table 6.4 respectively.
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Table 6.3: TVECM estimates by Martens, Kofman and Vorst [79]; May 1993 data

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5
−∞ < Zt−1 −0.158 < Zt−1 −0.073 < Zt−1 0.072 < Zt−1 0.204 < Zt−1

≤ −0.158 ≤ −0.073 ≤ 0.072 ≤ 0.204 <∞
Futures equation
Constant 0.000242 0.000003 0.000001 -0.000049 0.000726
∆ lnFt−1,τ 0.109 -0.151a -0.0431 -0.0383 0.318
∆ lnFt−2,τ 0.0229 0.0141
∆ lnFt−3,τ 0.0389b -0.00349
∆ lnFt−4,τ 0.0258c -0.0571c

∆lnSt−1 0.203 -0.0768 -0.0233 0.0159 0.064
∆ lnSt−2 -0.137b

Zt−1 -0.00193 0.000281 -0.000129 0.000728b -0.00473
Adj. R2 -0.04 0.023 0.003 0.007 0.028
Index equation
Constant 0.000165 0.00106a 0.000001 -0.000084a 0.000201
∆ lnFt−1,τ 0.0287 0.0856a 0.041a 0.04a 0.0786
∆ lnFt−2,τ 0.23a 0.101a 0.117a

∆lnFt−3,τ 0.164a 0.104a 0.0883a

∆lnFt−4,τ 0.144a 0.0744a 0.0917a

∆lnFt−5,τ 0.141a 0.0587a 0.0474a

∆lnFt−6,τ 0.134a 0.0422a 0.0108
∆ lnFt−7,τ 0.0714a 0.0484a 0.0328a

∆lnFt−8,τ 0.0597a 0.0253a 0.0095
∆ lnFt−9,τ 0.0471b 0.0277a 0.0287b

∆lnFt−10,τ 0.0408c 0.0187a

∆lnFt−11,τ 0.0391c 0.0111c

∆lnFt−12,τ 0.0573a

∆lnSt−1 0.551a -0.0308 -0.0508a 0.0738a 0.426b

∆lnSt−2 0.819a 0.0493
∆ lnSt−3 -0.134a

Zt−1 0.00215 0.00106a 0.000138a 0.000999a 0.00176
Adj. R2 0.424 0.263 0.120 0.208 0.181

Observations 45 772 4809 1391 36
a Significant at 1% level
b Significant at 5% level
c Significant at 10% level
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Table 6.4: TVECM estimates by Martens, Kofman and Vorst [79]; November 1993 data

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5
−∞ < Zt−1 −0.186 < Zt−1 −0.09 < Zt−1 0.062 < Zt−1 0.212 < Zt−1

≤ −0.186 ≤ −0.09 ≤ 0.062 ≤ 0.212 <∞
Futures equation
Constant 0.000162 0.000068 0.000007c 0.000039b 0.000283
∆ lnFt−1,τ -0.455a -0.256a 0.00406 -0.0393c 0.0558
∆ lnFt−2,τ 0.107 0.0169
∆ lnFt−3,τ -0.142b 0.0154
∆ lnFt−4,τ 0.0519a

∆lnSt−1 0.781 0.0382 0.118a 0.0889b -0.144
∆ lnSt−2 0.315 0.0104
∆ lnSt−3 0.0676b

∆lnSt−4 0.0865a

Zt−1 0.00048 0.000712 -0.000209c -0.000473a -0.00132
Adj. R2 0.185 0.119 0.008 0.008 0.002
Index equation
Constant -0.000515b 0.000079 -0.00012a -0.000034a 0.000028
∆ lnFt−1,τ 0.157c 0.0812b 0.0473a 0.0305a 0.0926
∆ lnFt−2,τ 0.121a 0.0514a 0.0698a

∆lnFt−3,τ 0.123a 0.0561a 0.0664a

∆lnFt−4,τ 0.0533a 0.0423a

∆lnFt−5,τ 0.047a 0.0344a

∆lnFt−6,τ 0.0204a 0.0224b

∆lnFt−7,τ 0.0347a

∆lnFt−8,τ 0.0307a

∆lnFt−9,τ 0.0126c

∆lnFt−10,τ 0.0232a

∆lnFt−11,τ 0.0178a

∆lnFt−12,τ 0.0152b

∆lnFt−13,τ 0.0137 b

∆lnSt−1 0.637 -0.0108 0.0221 0.083a 0.488a

∆lnSt−2 0.281a 0.0303b 0.0743a

∆lnSt−3 0.181b 0.0453a 0.0437b

∆lnSt−4 0.156c 0.0278c 0.0438b

Zt−1 -0.00194 0.00115b 0.000386a 0.000441a 0.000251
Adj. R2 0.314 0.238 0.119 0.137 0.172

Observations 45 772 4809 1391 36
a Significant at 1% level
b Significant at 5% level
c Significant at 10% level
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There are at least two more approaches in the literature for modeling the same data set.

They are both based on the TVECM and they both try to address estimation in an op-

erationally more convenient and integrated way. The first approach is Bayesian, and was

proposed by Forbes, Kalb and Kofman [37]. Initially, the authors fix some aspects of the

model specification. Specifically, they decide to work with three regimes and an autore-

gressive order of eight for both index and futures log returns within each regime. The

remaining parameters of the threshold lag d, threshold values c = (c1, c2), and the linear

autoregression coefficients within each regime are given prior distributions. The parame-

ter d is assigned a uniform prior over a possible range S, and the threshold vector c is

assigned a bivariate normal, truncated so that it satisfies c1 < c2. The parameters within

each regime follow a non-informative prior, the same as for the treatment of the linear VAR

model given by Zellner [123]. In order to sample from the posterior distribution, the authors

provide the marginal posterior of (d, c) given the data, and the conditional posteriors of the

parameters within each regime given (d, c) and the data. The latter are analogous to the

linear model, with coefficients following normal and covariance matrices following inverse

Wishart distributions, but the former is a non-standard distribution. The authors propose a

numerical integration scheme for normalizing p(d, c|Data), and then sample (d, c) from the

resulting discrete approximation to the distribution. Finally, using a Monte Carlo sampling

scheme, they construct Rao-Blackwellized estimates of the parameters within each regime.

The prior for c is the only informative prior in the model, where the means and variances

of the truncated normals are specified based on knowledge of market behavior. Table 6.5

is reproduced from Forbes, Kalb and Kofman [37], and it presents the means and stan-

dard deviations of the Monte Carlo sample for the linear coefficients within each regime.

Moreover, the authors note that the posterior of d overwhelmingly supports a threshold lag

d = 1, and that the threshold pair (c1, c2) = (−0.01039, 0.1278) holds a marginal posterior

posterior probability of 0.727. So, for interpretation purposes, it can be assumed that the
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thresholds are defined by these particular values.

The second approach is frequentist and was proposed by Tsay [117]. It is actually an

extension of his technique for fitting univariate threshold models to a multivariate setting.

First, he proposes a nonlinearity test, based on arranged autoregression. Then, he advocates

the use of conditional least squares estimates for estimation. Specifically, he assumes the

number of regimes and the order within each regime are known, so that the conditional sum

of squares depends only on the threshold delay d, the threshold values c, and the coefficients.

In support of this approach, he shows that, under certain conditions, the estimators that

maximize the conditional sum of squares are strongly consistent. For selecting all the

remaining parameters and the model specification, he suggests using AIC. Tsay then applies

his method to our current data, after replacing 10 extreme observations by the average of

their two nearest neighbors, in order to reduce the influence of outliers. Then, he fixes

p = 8 and J = 3, and allows d ∈ {1, 2, 3, 4}, and c1 and c2 to assume discrete values in the

two intervals [−0.115,−0.2] and [0.025, 0.145], respectively. The later are chosen based on

the empirical range of Zt and not on the plots of nonparametric coefficient estimates. The

author then selects the threshold values c1, c2, as well as d, by minimizing AIC using a grid

search. The remaining coefficient of the regimes are chosen by conditional least squares and

are presented in Table 6.6.

6.2.3 Estimation Using GPs

We apply our nonparametric estimation procedure to the same problem. We fit a bivariate

functional coefficient VAR model, given by

∆Y t = X>
t F (U t) + εt (6.10)
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Table 6.5: Bayesian TVECM estimates (posterior standard deviations) by Forbes, Kalb and
Kofman [37]; May 1993 data.

Lower regime Middle Regime Upper Regime
Futures Index Futures Index Futures Index
equation equation equation equation equation equation

Constant 0.00005 0.00015 0.0 0.0 0.0002 -0.00011
(0.00009) (0.00006) (<0.00001) (<0.00001) (0.00011) (0.00005)

∆ lnFt−1,τ -0.12345 0.15863 -0.05624 0.04065 0.04751 0.04766
(0.05609) (0.03542) (0.01495) (0.00636) (0.06256) (0.03112)

∆ lnFt−2,τ -0.03807 0.29188 0.01931 0.10681 -0.00922 0.17734
(0.05869) (0.03645) (0.01497) (0.00622) (0.06353) (0.0316)

∆ lnFt−3,τ -0.01158 0.17084 0.03534 0.10477 0.00829 0.11326
(0.06327) (0.04043) (0.01491) (0.00624) (0.06734) (0.03395)

∆ lnFt−4,τ 0.06247 0.12117 0.01013 0.08486 -0.02001 0.05436
(0.06711) (0.04263) (0.01547) (0.00633) (0.06567) (0.03414)

∆ lnFt−5,τ 0.02033 0.13589 0.01195 0.06417 0.02491 -0.00905
(0.06444) (0.04142) (0.01539) (0.00632) (0.06874) (0.03503)

∆ lnFt−6,τ -0.06893 0.08754 -0.00914 0.04905 0.04929 -0.01143
(0.701) (0.04436) (0.01479) (0.00613) (0.06822) (0.03292)

∆ lnFt−7,τ -0.00372 0.09263 0.00044 0.04049 0.11949 0.02589
(0.07338) (0.04537) (0.01421) (0.00614) (0.0701) (0.3398)

∆ lnFt−8,τ -0.11563 0.05837 -0.01029 0.02002 0.00399 -0.01271
(0.06702) (0.04273) (0.01361) (0.00596) (0.06436) (0.03191)

∆ lnSt−1 0.08683 0.07322 -0.05646 -0.04276 0.10756 -0.22998
(0.10325) (0.06888) (0.02935) (0.0123) (0.10745) (0.05474)

∆ lnSt−2 -0.18424 0.05204 -0.04384 -0.01549 -0.02106 -0.04501
(0.11179) (0.07429) (0.02813) (0.01166) (0.11678) (0.05714)

∆ lnSt−3 -0.05493 -0.21202 0.02244 -0.0131 -0.19519 -0.04291
(0.12567) (0.08068) (0.02762) (0.0117) (0.11776) (0.05894)

∆ lnSt−4 0.14323 0.1821 0.00833 -0.00196 0.00402 0.00934
(0.11565) (0.07471) (0.02731) (0.01189) (0.11519) (0.05794)

∆ lnSt−5 0.43599 -0.11881 0.01723 0.02187 -0.06118 -0.0131
(0.1222) (0.07836) (0.02805) (0.01157) (0.10984) (0.05489)

∆ lnSt−6 0.07386 0.04281 0.03839 0.0017 0.06791 0.07497
(0.1099) (0.06971) (0.02626) (0.01102) (0.11368) (0.05546)

∆ lnSt−7 -0.22131 -0.04934 -0.00421 0.01792 -0.24175 0.01335
(0.1084) (0.06868) (0.02552) (0.01079) (0.11237) (0.05524)

∆ lnSt−8 -0.07016 0.03165 0.00519 0.01695 0.17988 0.03239
(0.11353) (0.07282) (0.02585) (0.01049) (0.10286) (0.05191)

Zt−1 0.00054 0.0013 0.00002 0.00017 -0.00124 0.00109
(0.00076) (0.00047) (0.00007) (0.00003) (0.00077) (0.00038)

Thresholds c1 = −0.1039, c2 = 0.1278 (maximum a-posteriori estimates).

Observations 365 6269 418
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Table 6.6: TVECM estimates (absolute t-ratios) by Tsay [117]; May 1993 data.

Lower regime Middle Regime Upper Regime
Futures Index Futures Index Futures Index
equation equation equation equation equation equation

Constant 0.00002 0.00005 0.0 0.0 -0.00001 -0.00005
(1.47) (7.64) (0.07) (0.53) (0.74) (6.37)

∆ lnFt−1,τ -0.8468 0.07098 -0.03861 0.04037 0.04102 0.02305
(3.83) (6.15) (1.53) (3.98) (1.72) (1.96)

∆ lnFt−2,τ -0.0045 0.15899 0.04478 0.08621 -0.02069 0.09898
(0.2) (13.36) (1.85) (8.88) (0.87) (8.45)

∆ lnFt−3,τ 0.2274 0.11911 0.07251 0.09752 0.00365 0.08455
(0.95) (9.53) (3.08) (10.32) (0.15) (7.02)

∆ lnFt−4,τ 0.02429 0.08141 0.01418 0.06827 -0.02759 0.07699
(0.99) (6.35) (0.6) (7.24) (1.13) (6.37)

∆ lnFt−5,τ 0.0034 0.08936 0.01185 0.04831 -0.00638 -0.05004
(0.14) (7.1) (0.51) (5.13) (0.26) (4.07)

∆ lnFt−6,τ -0.00098 0.07291 0.01251 0.0358 -0.03941 0.02615
(0.04) (5.64) (0.54) (3.84) (1.62) (2.18)

∆ lnFt−7,τ -0.00372 0.05201 0.02989 0.04837 -0.023031 0.02293
(0.15) (4.01) (1.34) (5.42) (0.85) (1.95)

∆ lnFt−8,τ 0.00043 0.00954 0.01812 0.02196 -0.04422 0.00462
(0.02) (0.76) (0.85) (2.57) (1.90) (0.4)

∆ lnSt−1 -0.08419 0.00264 -0.07618 -0.05633 0.06664 0.11143
(2.01) (0.12) (1.7) (3.14) (1.49) (5.05)

∆ lnSt−2 -0.05103 0.00256 -0.1092 -0.01521 0.04099 -0.01179
(1.18) (0.11) (2.59) (0.9) (0.92) (0.53)

∆ lnSt−3 0.07275 -0.03631 -0.00504 0.01174 -0.01948 -0.01829
(1.65) (1.58) (0.12) (0.71) (0.44) (0.84)

∆ lnSt−4 0.04706 0.01438 0.02751 0.0149 0.01646 0.00367
(1.03) (0.6) (0.71) (0.96) (0.37) (0.17)

∆ lnSt−5 0.08118 0.02111 0.03943 0.0233 -0.0343 -0.00462
(1.77) (0.88) (0.97) (1.43) (0.83) (0.23)

∆ lnSt−6 0.0439 0.04569 0.0169 0.01919 0.06084 -0.00392
(0.96) (1.92) (0.44) (1.25) (1.45) (0.19)

∆ lnSt−7 -0.03033 0.02051 -0.08647 0.0027 -0.00491 0.03597
(0.7) (0.91) (2.09) (0.16) (0.13) (1.9)

∆ lnSt−8 -0.0292 0.03018 0.01887 -0.00213 0.0003 0.02171
(0.68) (1.34) (0.49) (0.14) (0.01) (1.14)

Zt−1 0.00024 0.00097 -0.0001 0.00012 0.00025 0.00086
(1.34) (10.47) (0.3) (0.86) (1.41) (9.75)

Thresholds c1 = −0.022574, c2 = 0.037673.

Observations 2234 2410 2408
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where

X>
t =






X11t · · · X1p1t 0 · · · 0

0 · · · 0 X21t · · · X2p2t




 (6.11)

F (U t)
> =






f11(U11t) · · · f1p1
(U1p1t) 0 · · · 0

0 · · · 0 f21(U21t) · · · f2p2
(U2p2t)




 (6.12)

The relevance with the VECM comes from our choice of regressors X t and functional co-

efficient arguments U t. We perform a model search through candidate regressor variables

(∆ lnFt−1,τ , . . . ,∆lnFt−12,τ ∆lnSt−1, . . . ,∆lnSt−12, Zt−1) and a unity variable to allow for

a varying mean level, and with functional coefficient argument set to Zt−1. The argument

variable is fixed in order to capture the error-correcting behavior and to make the results

comparable with those of the TVECM, but more flexibility could be allowed. For example,

the candidate arguments could be (Zt−1, . . . , Zt−4), corresponding to the candidate delays

in the threshold variable for the TVECM. We use our forward model selection procedure to

incrementally add new terms for either coordinate of ∆Y t, starting from a null model with-

out mean and trying to minimize BIC. For the functional coefficients, we use a projected

process approximation based on 10 kernels, centered at the observed quantiles of the argu-

ment variable, and we also test for constant coefficients. The resulting model specification

for May is

∆ lnFt,τ = ε1t (6.13)

∆ lnSt = f1Zt−1 + f2(Zt−1)∆ lnFt−1,τ + f3(Zt−1)∆ lnFt−2,τ + f4∆lnFt−3,τ +

f5∆lnFt−4,τ + f6∆lnFt−5,τ + f7∆lnFt−6,τ + f8∆lnSt−9 + ε2t (6.14)
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and all estimated coefficient functions are plotted in Fig. 6.14. The resulting model speci-

fication for November is

∆ lnFt,τ = ε1t (6.15)

∆ lnSt = f1(Zt−1) + f2∆lnFt−1,τ + f3∆lnFt−2,τ + f4∆lnFt−3,τ +

f5∆lnFt−4,τ + f6∆lnFt−5,τ + f7(Zt−1)∆ lnSt−1 + f8∆lnSt−2 +

f9∆lnSt−3 + f10∆lnSt−4 + ε2t (6.16)

and all estimated coefficient functions are plotted in Fig. 6.15. The hyperparameters for

the two models include the prior means, the smoothing parameters of the Gaussian kernels,

and the error variances and correlation. They are given in Table 6.7, together with the

maximum marginal likelihood, the edf and the BIC.

Table 6.7: Hyperparameters for May’s model (6.14-6.14) and November’s model (6.14-6.14).

May November
µ h µ h

f1 0.02319 ∞ 0.00902 0.19024
f2 -0.05467 0.17768 0.06999 ∞
f3 0.25104 0.30457 0.05618 ∞
f4 0.10014 ∞ 0.05328 ∞
f5 0.07572 ∞ 0.06816 ∞
f6 0.05526 ∞ 0.06031 ∞
f7 0.03790 ∞ 0.34313 0.11656
f8 0.01921 ∞ 0.03536 ∞
f9 - - 0.03686 ∞
f10 - - 0.05376 ∞
σ2

1 8.51267×10−4 7.42622×10−4

σ2
2 1.69936×10−4 1.59587×10−4

ρ 0.26334 0.17031

` -18554.81 -20854.65
DF 26.75843 32.64562
BIC 37365.26 42024



CHAPTER 6. APPLICATIONS 156

−0.3 −0.1 0.1 0.3

0.
00

01
8

0.
00

02
2

0.
00

02
6

I I I II I I I I

(a) f1

−0.3 −0.1 0.1 0.3

−0
.5

0.
0

0.
5

I I I II I I I I

(b) f2

−0.3 −0.1 0.1 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

I I I II I I I I

(c) f3

−0.3 −0.1 0.1 0.3

0.
09

0
0.

09
5

0.
10

0
0.

10
5

0.
11

0

I I I II I I I I

(d) f4

−0.3 −0.1 0.1 0.3

0.
06

5
0.

07
0

0.
07

5
0.

08
0

0.
08

5

I I I II I I I I

(e) f5

−0.3 −0.1 0.1 0.3
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

I I I II I I I I

(f) f6

−0.3 −0.1 0.1 0.3

0.
03

0
0.

03
5

0.
04

0
0.

04
5

I I I II I I I I

(g) f7

−0.3 −0.1 0.1 0.3

0.
00

0.
01

0.
02

0.
03

0.
04

I I I II I I I I

(h) f8

Figure 6.14: Plots of functional coefficients in eq. (6.14) for the dynamics of ∆ lnSt in May
1993: (—) posterior mean; (- -) pointwise 95% confidence band. Vertical bars at the bottom
indicate 1st to 9th observed deciles of the argument variable Zt−1.
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Figure 6.15: Plots of functional coefficients in eq. (6.16) for the dynamics of ∆ lnSt in
November 1993: (—) posterior mean; (- -) pointwise 95% confidence band. Vertical bars at
the bottom indicate 1st to 9th observed deciles of the argument variable Zt−1.
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Both fitted models are nonlinear, where the nonlinearity comes from only two terms, the

remaining having constant coefficients. Moreover, they have explanatory/predictive power

only for the index returns, the futures returns being conditionally independent of their

past. For both models, the first terms depend on Zt−1 alone, and lead to error correcting

behavior. To verify this, we plot in Fig. 6.16 the net additive effects of these terms on the

index log-returns ∆ lnSt, i.e. we plot f1Zt−1 for May’s model, and f1(Zt−1) for November’s

model. From the definition of the error term in eq. (6.7), we expect ∆ lnSt to drop when

Zt−1 is below zero and vice versa, and this is exactly what happens in both cases. For

November’s model, the effect is nonlinear and more pronounced away from zero. For May’s

model, the error correcting rate with respect to Zt−1 is constant, but if we consider other

terms the overall behavior is nonlinear. In particular, the U-shaped form of the coefficient

functions for the lagged futures log-returns increases the error correction intensity when

the errors move away from zero. Notice that when futures returns are negative, lnFt,τ and

consequently the error Zt drop, so Zt is positively correlated with ∆ lnFt,τ . Thus, terms

like f(Zt−1)∆ lnFt−1,τ , with f being U-shaped, will give higher error correction rates when

Zt−1 is away from zero. We demonstrate this graphically in Fig. 6.17, where we plot May’s

fitted values for ∆ lnSt versus Zt−1. It is evident that the error correcting effect is weaker

around zero and stronger near the boundaries of the range. As a final confirmation of the

nonlinear error correcting behavior, we present in Fig. 6.18 plots of the impulse response

function of the mispricing error for different shocks and histories. The shocks are equal to

plus/minus one and two standard deviations of the mispricing error. They are introduced

only in ∆ lnF , because our model implies that futures returns are random and are, there-

fore, leading the index returns and shaping the mispricing error. For plots (a) and (b), the

pre-shock mispricing errors are close to zero, whereas for plots (c) and (d) they are substan-

tially positive and negative, respectively. The impulse response functions are asymmetric in

the last two cases exactly because the error correction intensity is variable. When the error
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is already substantially positive/negative, the introduction of a further positive/negative

shock will disproportionately increase the error correction strength.
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Figure 6.16: Plots of additive effect on ∆ lnSt from the error correcting term: (—) f1Zt−1

for May’s model (6.14) and (- -) f1(Zt−1) for November’s model (6.16).
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Figure 6.17: Plots of fitted values of ∆ lnSt versus Zt−1 for May’s model (6.14).
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Figure 6.18: Impulse response functions of the mispricing error Z for May’s model (6.14).
Values at zero give the initially introduced impulse, and subsequent values give the difference
between the iterated dynamics of Z with and without the impulse. The functions are
conditional on the history of the series at times (a) t = 100 (Z100 = 0.028), (b) t = 200
(Z150 = 0.0169), (c) t = 324 (Z324 = 0.176), (d) t = 7056 (Z7056 = −0.089).

We also check the fit of our model by inspecting the residuals. We only present May’s model,

since the results were similar to those for November. The recursive residuals for both the

index and futures are plotted in Fig. 6.19, versus time and the error variable Zt−1. As is

typically the case for financial time series, the residuals are over-dispersed, having heavy

tails and several extreme outliers. Moreover, the over-dispersion seems more pronounced

when the error term is higher in absolute value. We also performed normality tests on the

residuals, and they all strongly rejected the null hypothesis, as expected. On the other

hand, the CUSUM process plots in Fig. 6.20 are more optimistic. There are no deviations

besides those of the index returns versus time, which means there could be a mean shift
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within the month. We could address this issue by subtracting a moving average from the

data, but it is not sufficient reason to worry about the model’s fit. A more serious problem

is evident from the CUSUM-SQ process plot, presented in Fig. 6.21. There are significant

departures from the assumptions with respect to both time and Zt−1. The shapes of the

plots versus the error term verify our previous remark that the variance is higher when the

futures and the index are in disequilibrium. Moreover, the CUSUM-SQ process makes ex-

cursions outside the confidence bands across time. The residual ACF plots in Fig. 6.22 give

a reasonable explanation for this behavior. Evidently, there is significant autocorrelation in

the squared residuals, which clearly suggests that the data exhibit volatility clustering. We

also performed Ljung-Box and McLeod-Li tests on the usual and squared residuals and they

both rejected the whiteness assumption, the latter ones overwhelmingly. It is obvious that

the i.i.d. normal error assumption is inadequate for our data, and other error specifications

would be more realistic. For financial time series, in particular, it is common to assume

GARCH-type models with more dispersed distributions, such as t or alpha-stable. Never-

theless, we will use the model as such for making point predictions using the conditional

mean function, and we will not focus so much on its stochastic or second order properties.

6.2.4 Model Comparisons

We compare the different TVECMs and our model, which we refer to as GP-VECM from

now on. First we point out that all models exhibit nonlinear error correcting behavior, and

that this behavior depends primarily on the error term Zt−1, as we would expect. However,

the models have quite different forms depending on the estimation method used and the

time period they are applied to. It is difficult to identify a data generating mechanism that

is consistent through time and robust to changes in the model specification. For this reason,

we concentrate on predictive ability for comparison purposes. In Table 6.8 we give the mean
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Figure 6.19: Plots of recursive residuals for May’s model (6.14-6.14).
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Figure 6.20: Plots of CUSUM processes for May’s model (6.14-6.14); (- -) 95% confidence
bands .

squared errors of the fitted models for May’s data, and predictive mean squared errors of

one-step-ahead predictions applied to November’s data. For the TVECM we present the es-
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Figure 6.21: Plots of CUSUM-SQ processes for May’s model (6.14-6.14); (- -) 95% confidence
bands .
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Figure 6.22: Plots of residual and squared residual ACF for May’s model (6.14-6.14); (- -)
95% confidence bands .

timation methods of Martens, Kofman and Vorst (MKV), Forbes, Kalb and Kofman (FKK)

and Tsay, and we also include a zero-mean null model for comparison. For the Bayesian
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model of FKK, we use the maximum a-posteriori estimates of the thresholds and the pos-

terior means of the coefficients to get point predictions. Similarly for our method, we use

the posterior means of the functional coefficients to get point predictions. As we can see,

MKV and FKK give better in sample but worse out of sample performance. Tsay’s model

gives the best TVECM results, but its MSPE is still higher than our model’s. Moreover,

we present in Fig. 6.23 the mean squared predictive error for each model’s one- to ten-step-

ahead iterative predictions. Overall, our GP-VECM has the lowest predictive error for all

lead times. The MKV model improves a lot for the index and for lead times greater than

one, but for the futures it still has the highest error. Another interesting characteristic is

that the mean futures error for all TVECMs actually decreases with time. This is an indica-

tion that these models do not offer any predictive improvements over the null model for the

futures returns. This observation is consistent with empirical evidence that futures prices

tend to lead index prices, e.g. see Stoll and Whaley [110] or Kawaller, Koch and Koch [66].

This roughly means that information or expectations about market movements are first re-

flected on the futures prices and later on the index. This lead-lag effect is supported by the

argument that futures prices readily reflect new information, whereas the index has many

different components that need to change before its level changes. Our model expresses

this explicitly by not including any terms for the conditional mean of the futures returns.

Thus, it affords an interpretation consistent with the hypothesis that changes in the value

of the asset are unpredictable. The other models also point in this direction (compare for

example the values of the adjusted R2 for futures and index returns in Table 6.3) but they

do not explicitly account for this.

We believe that the main reason for this overfitting behavior is the way TVECMs are

specified and estimated. There is an inherent difficulty in doing these operations in an inte-

grated way and the resulting models tend to be overparametrized. First of all, you cannot
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Figure 6.23: Mean square error of iterative predictions versus lead time for November’s
data, using all three TVECM and our GP-VECM, fitted to May’s data.

Table 6.8: Mean squareds errors for May and one-step-ahead mean squared predictive errors
for November, using the proposed TVECMs in the literature and our GP-VECM. Standard
errors appear in parentheses and all values are rescaled by a factor of 104.

TVECM
Null Model MKV FKK Tsay GP-VECM

MSE for May
Futures 8.49499 8.38331 8.36555 8.39275 8.49499

(0.23326) (0.22717) (0.22416) (0.22843) (0.23326)
Index 2.42336 1.65408 1.64677 1.71767 1.70092

(0.09539) (0.05582) (0.05329) (0.05805) (0.05699)
MSPE for November
(using May’s fit)
Futures 7.40599 7.68792 7.51579 7.47968 7.40599

(0.19514) (0.20191) (0.19732) (0.19624) (0.19514)
Index 2.02139 1.76827 1.72038 1.71339 1.68757

(0.07346) (0.05501) (0.05123) (0.05199) (0.05231)

fit autoregressive parameters that are constant through regimes without resorting to pro-

file methods. Moreover, the estimation of the threshold values is cumbersome, relying on

grid searches in classical estimation or numerical methods in the Bayesian case, and often
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requiring subjective input or ad hoc practices. The autoregressive order and/or variable

selection procedure is also not well established. Sometimes the model specification is fixed

beforehand, as in FKK and Tsay, whereas other times it is determined in an ad hoc basis,

as in MKV where they only keep significant coefficients. Using predictive criteria for this

purpose can also be complicated. Exhaustive model search is slow when combined with the

grid search for the thresholds, and even greedy methods are tricky to handle because every

variable added can change the optimal number of regimes and threshold locations. As a re-

sult, we believe that the previously presented TVECMs were overparametrized. For May’s

data, MKV fit 79 coefficients, only counting the autoregressive coefficients and excluding

the threshold and covariance parameters. Both FKK and Tsay fit 108 coefficients for the

same data, whereas our model has 26.75 effective degrees of freedom. These numbers are

not directly comparable but they are indicative of the complexity of each model. Thus, for

descriptive purposes, we believe our model is more parsimonious, since nonlinearity only

comes from a couple of terms. One descriptive advantage for which TVECMs are popular in

this context is that they give information on so called arbitrage bands. These are the values

of the mispricing error above which arbitrage opportunities are profitable. We are skeptical

of this interpretation for the thresholds, because all three TVECM give different results.

Even though FKK and Tsay use the same number of regimes and autoregressive order,

their thresholds are markedly different. The discrepancy comes mainly from the estimation

procedure. Tsay uses a predictive criterion, so his regimes have almost the same number

of observations in order to reduce predictive variance. Moreover, the assumption that the

series changes its behavior in a discrete fashion, when the mispricing crosses a threshold,

might not be well founded, given that different TVECM estimation procedures cannot pick

up consistent threshold values.

Finally, we point out some practical aspects in model fitting. Before applying a TVECM
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both MKV and Tsay perform nonlinearity tests, but our method does not require this step

because the feasible set of our selection procedure includes linear models. Moreover, MKV

use a test to decide between a three and a five regime model. Our use of a single crite-

rion in model selection avoids the need and dangers of multiple testing. Tsay’s procedure

acknowledges this fact and the need for integrated estimation, but we believe that certain

difficulties still persist, having to do in particular with grid searches. We do not have in-

formation on the time requirements to fit the other models, but we believe our method is

comparable. It took us approximately 16 hours to fit each month, running R code on a

Pentium 4 workstation. The procedure is also highly automated. The only decisions we

have to take concern the candidate regressor and argument variables, and they were all

taken beforehand. We therefore believe that our GP-VECM is an attractive alternative to

the existing TVECM. It tends to give more parsimonious models, it is easy to fit without

requiring much subjective or ad hoc input, and it gives better predictive behavior than the

other models for the data at hand.
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6.3 Nonlinear Stochastic Volatility Model

6.3.1 Introduction

In this section we apply our nonlinear state space (SS) methodology to a stochastic volatility

(SV) model. This class of models has recently become very popular in financial econometrics

and has many applications especially in derivatives pricing and risk management. The main

idea is to allow the variance of a time series to be a stochastic process itself. To be more

concrete, suppose we are interested in modeling a financial asset St using a SV model. The

standard single-asset formulation of the model in continuous time is

dSt = µStdt+ σtStdWt (6.17)

df(σt) = a(σt)dt+ b(σt)dBt (6.18)

This model combines the usual Black-Scholes dynamics for the log-returns of St in (6.17)

with a transformed random volatility process f(σt), following its own stochastic differential

equation (6.18). The functions f, a, b can be arbitrary and Wt, Bt are Brownian motions,

possibly correlated.

There are three important special cases of the general SV model, depending on the form of

(6.18), which we list below

• Hull-White (HW) model: dσ2
t = aσ2

t dt+ bσ2
t dBt

• Cox-Ingersoll-Ross (CIR) model: dσ2
t = a1(a0 − σ2

t )dt+ bσtdBt

• log-Ornstein-Uhlenbeck (log-OU) model: d log(σ2
t ) = a1(a0 − log(σ2

t ))dt+ bdBt

The HW model is essentially a log-normal model for σ2
t and can be equivalently expressed

as d log(σ2
t ) = (a + b2/2)dt + bdBt = a′dt + bdBt, in analogy to the log-OU model. The
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model states that the logarithm of the variance process follows a random walk, and Hull

and White [61] give an analytical solution to European options when the two processes are

uncorrelated. The CIR model uses mean-reverting dynamics with a different scaling for the

random increments of the volatility process. It is also known as the Heston model, after

Heston [59] who provided a closed form solution for the price of European options, also

allowing for non-zero correlation. The log-OU model is an extension of the HW model to

mean-reverting dynamics, but no analytic solution is available for option pricing. Finally,

all three models have the attractive property that the resulting volatility process {σt} is al-

ways positive. For our application the log-volatility models fit our framework best, because

we need b(σt) to be constant or at least state-independent. For this reason, and because it

is more general than the HW model, we focus on the log-OU model.

The log-OU model is a continuous time model, but for statistical estimation it must be

fit with discrete observations. Likelihood estimation requires the transition probabilities of

the continuous stochastic differential equation which are usually intractable, especially in

the presence of correlation. Therefore, we work with a discretized version of the continu-

ous model from which we can easily obtain transition probabilities. We adopt the Euler

discretization of the log-OU model

∆St

St−1
=

St − St−1

St−1
= µ+ σtεt (6.19)

∆ log(σ2
t+1) = log(σ2

t+1) − log(σ2
t ) = a1(a0 − log(σ2

t )) + bξt (6.20)

We can simplify the notation by letting Rt = St−St−1

St−1
be the return on the asset and

ht = log(σ2
t ) the log-volatility. We also rearrange the long run average of log-volatility a0

to appear as a scaling factor σ̄ in the return errors, where σ̄ can be thought of as the mean

volatility level of returns. We do this in order to remove any constant terms in the dynamics
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of the latent process, as is usually the case in SS models. The equivalent model becomes

Rt = µ+ σtσ̄εt (6.21)

ht+1 = a1ht + σηηt (6.22)

where {εt, ηt} are possibly correlated standard normal random variables.

This discrete model poses some difficulties in estimation because the process ht is latent and

appears in the variance of the observed returns Rt. Explicit maximum likelihood estimation

is not possible, and nonlinear, non-Gaussian filtering schemes such as sequential Monte Carlo

(also known as particle filters) have to be employed, e.g. see Doucet et al. [29]. However,

Harvey et al. [52] propose a transformation which linearizes the above model. They take the

logarithm of the squared excess returns yt = log((Rt−µ)2), so that the observation equation

becomes yt = log(σ2
t )+log(σ̄2)+log(ε2t ). The transformation can give infinite values if Rt−µ

is zero, which can happen for example if we fix µ = 0 and some return is zero (this event has

positive probability since, in reality, assets take discrete values). To avoid this situation, the

authors suggest using an estimate of µ from the data. The transformed error term log(ε2t )

is distributed as the logarithm of a chi-squared random variable, in particular it has mean

equal to -1.27 and variance equal to π2/2, but the authors approximate the error term with

a normal distribution with the same moments. Fig. 6.24 presents the density of the log-χ2

and that of the normal approximation for comparison. Assuming for now that εt and ηt are

uncorrelated, the model after the transformation becomes

yt = ω + ht + σξξt (6.23)

ht+1 = a1ht + σηηt (6.24)

where ω = −1.27 + log(σ̄2), σξ =
√
π/2, and ξt and ηt are i.i.d standard normal. Thus, the
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model is recast in the classic linear Gaussian SS form, and the Kalman filtering machinery

is readily available for estimation. This is essentially a Quasi Maximum Likelihood (QML)

estimation method.

One problem with this approach is that the exact error distribution of log(ε2t ) is quite skewed

to the left and can accommodate very small observations yt compared to the approximate

Gaussian error ξt. Durbin and Koopman [32] proposed a Monte Carlo likelihood correction

based on importance sampling for linear SS models where the emission probabilities (i.e.

the observation errors) are non Gaussian. Sandmann and Koopman [98] implemented this

approach on a SV model similar to ours, but we do not attempt this correction for two

reasons. First, the parameter estimates from QML will still be consistent, even though

they can suffer from poor small sample properties. Second, the correction cannot provide

exact filtering distributions, so in this respect there is no gain. Another issue which we do

address, though, is that of correlation between the returns and the volatility process. This

is important since empirical research has shown that financial markets react differently

depending on the direction of returns, see Bekaert and Wu [6]. In particular, volatility

tends to rise in response to big negative returns and fall in response to big positive returns,

a phenomenon known as asymmetric volatility. Notice that since the transformation uses

the square of the returns, information about the sign, and in extension the correlation, is

lost. Harvey and Shephard [53] proposed a SS model conditional on the sign of the return

errors st = sign(εt) which can recover information on correlation. Letting ρ = Cor(εt, ηt) be

the correlation of the original return and volatility errors, they show that the conditional

linear SS form is

yt = ω + ht + σξξt (6.25)

ht+1 =

(

a1 −
γst

σ2
ξ

)

ht + st

(

δ +
γ

σ2
ξ

(yt − ω)

)

+ ση′η′t (6.26)
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where δ = .7979ρση , γ = 1.1061ρση ,σ2
η′ = σ2

η − δ2 − γ2/σ2
ξ and ξt, η

′
t are i.i.d. standard

normal. By estimating the parameters of this model we can estimate the corresponding

parameters of model (6.21-6.22), including correlation.
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Figure 6.24: Density of log-χ2 and N (−1.27, π2/2) random variables.

Our goal is to extend the stochastic volatility model (6.21-6.22) to a nonlinear setting. We

do this by adding a nonlinear function of the observation error in the dynamics of the model

Rt = µ+ σtσ̄εt (6.27)

ht+1 = a1ht + f(εt) + σηηt (6.28)

The particular choice of argument is based on the remark that the correlation in the errors

produces a linear effect of εt−1 on ht−1. To verify this notice that ηt = ρεt +
√

1 − ρ2η′t,

where εt, η
′
t are independent, so the original dynamics in (6.22) can be rewritten as ht+1 =

a1ht + σηρεt + ση

√

1 − ρ2η′t. Therefore, it seems natural to extend the linear dependence

of ht+1 on εt to a nonlinear one, by introducing the term f(εt). In order to fit this model
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in our nonparametric NLSS methodology, the argument εt to the function must be known

explicitly by time t, which is not the case for SV models. For practical purposes we use

an estimate of εt, given by dividing the observed excess return Rt − µ by an estimate

of the volatility. Unfortunately, we cannot use the process σt, because it is latent and

this would break the conditional normality property of the model. For this reason we

use an exponentially weighted moving average (EWMA) volatility estimate of the form

σ̂2
t = λσ̂2

t−1 +(1−λ)(Rt −µ)2, which only depends on the observations. Thus, the argument

variable of f becomes ε̂t = Rt−µ
σ̂t

. The EWMA volatility estimate is a well known bench-

mark estimate of in-sample volatility, popularized by RiskMetrics [47]. For daily volatilities

the value λ = .94 is recommended, which is what we also use. We can now estimate the

function f nonparametrically using our NLSS methodology on the transformed SS model,

but we give more details on this in the sequence.

We also look at a competing parametric, non-stochastic volatility model falling under the

umbrella of generalized autoregressive conditionally heteroskedastic (GARCH) models. We

focus on the first order exponential GARCH (EGARCH) model of Nelson [86], given by

Rt = µ+ σtεt (6.29)

ht+1 = a0 + a1ht + b1(|εt| + g1εt) (6.30)

where εt ∼ N (0, 1). The dynamics of the log-volatility are those of an autoregressive pro-

cess plus a nonlinear function of the observation error. Note that the process ht is non

stochastic, in the sense that it does not have its own error term. Thus, given its starting

value and the observed returns Rt we can exactly reconstruct the volatility process and,

by extension, the error εt. We look at the EGARCH model instead of its precursors, the

ARCH and GARCH model, because it ensures the estimated volatility is always positive

and it is more closely related to our SS models. It also captures the asymmetry in volatility
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by the term |εt| + g1εt, which allows different behavior depending on the sign of εt. This

can be viewed as a threshold effect on the dynamics of volatility, similar to the threshold

model of Glosten, Jagannathan and Runkle [46].

6.3.2 Data and Implementation

We apply our methodology to real data using eight years of daily closing levels on the

S&P 500 index, from Jan 1998 to Dec 2005, with a total of 2,012 observations. The data

come from the CRSP database of Wharton Research Data Services. From these data we

construct the series of returns Rt on the index, which is shown in Fig. 6.25. To simplify

model fitting, we use the mean and variance of the returns to estimate µ and the average

volatility level σ̄ in (6.21). We use these values to transform the observations according to

Harvey and Shephard [53], and we estimate the LSS model (6.25-6.26). The parameters of

the model, namely (a1, ρ, ση), are selected by maximizing the Kalman likelihood, where the

initial state distribution in the Kalman filter is N (0, σ2
η/(1 − a2

1)), an approximation to the

state’s stationary distribution.

Next, we turn our attention to our NLSS model, whose dynamics are given by

yt = ω + ht + σξξt

ht+1 = f(ε̂t) +

(

a1 −
γst

σ2
ξ

)

ht + st

(

δ +
γ

σ2
ξ

(yt − ω)

)

+ σηηt

We estimate the function f nonparametrically, using a zero mean GP prior with Gaussian

kernel C(x, x′) = ν2 exp{−(x − x′)2/`2} and a reduced rank approximation. We represent

the function as a linear combination f(x) =
∑10

i=1 βiC(x, bi) of 10 Gaussian kernels with

random coefficients βi and centered at basis points bi. For the basis points we use a set

of 10 percentiles in the range of ε̂t, in order to avoid the influence of outliers. As we
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demonstrated in section 3.5.2, we treat the unknown coefficients as latent variables so that

the state equation becomes


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From this point it is straightforward to apply the Kalman filter. The initial distribution

of the state vector is multivariate normal and incorporates the prior on f . For the first

coordinate, the log-volatility, we use the same N (0, σ2
η/(1 − a2

1)) as for the LSS model.

The remaining coordinates, the coefficients, independently follow a zero mean multivariate

normal with variance given by inverse matrix of the Gaussian kernel evaluated at the basis

points. The complete set of the model’s parameters is (a1, ρ, ση, ν, `), the last two com-

ing from the covariance kernel. Once again they are selected by maximizing the Kalman

likelihood, with initial values adapted from the SS model. Finally, we also estimate the

parameters (a0, a1, b1, g1) of the EGARCH model (6.29-6.30) using conditional maximum

likelihood.

The resulting parameter estimates for all three models are given in Table 6.9. Notice

that the autoregressive parameter a1 is very close to 1 for all models, which suggests that

volatility has long memory. There also seems to be a high correlation between returns

and volatility in the SV models, where the negative sign is in accordance with asymmetric
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Figure 6.25: Plot of daily returns on the S&P 5000 index, Jan 1998 to Dec 2005.

volatility. The posterior distribution of f is presented in Fig. 6.26, and the estimate shows

a pronounced bump around zero while becoming negative on both sides. For comparison

purposes, Fig. 6.27 presents the effect of the return error εt on log-volatility ht+1 for all

three models. As we pointed out before, this is linear for the LSS model, with slope ρση.

For our NLSS methodology the curve represents the posterior mean of the function f plus

the linear effect from correlation. The main difference of the NLSS model is that it produces

an increase in volatility for values of εt around zero. This nonlinear effect does not offer

an intuitive physical interpretation, but we rather believe it serves as an adjustment to

the dynamics of the process, stemming from the logarithmic transformation. When εt is

close to zero the logarithm of the squared return yt becomes very negative and pushes the

log-volatility ht down. Hence, a plausible explanation for the form of f is that it tries to

counteract this effect. We also calculate the fitted volatility process from each model. For

the two SS models, we use the Kalman smoother to get the conditional distribution of ht|y1:T
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which is normal, and we define the estimated volatility as the mean of the corresponding

log-normal distribution. A plot of the fitted volatility process from 2002 to 2006 for the

three models is given in Fig. 6.28, together with the EWMA estimate. It seems that the

fits of the models are pretty close, and they also follow the EWMA in sample estimate

of volatility. We do not provide diagnostics because our SS models use the transformed

data, which are not faithful to the original SV model. The methodology is rather focused

on estimating the SV model parameters using QML. Therefore, it is more appropriate to

differentiate the models based on how well they describe the evolution of the process, using

these estimates.

Table 6.9: Parameter estimates for the three volatility models fitted to S&P 500 returns.

Model

LSS NLSS EGARCH

a1 0.9911475 a1 0.9863075 a1 0.98797838
ρ -0.8325423 ρ -0.8377840 a0 -0.18476149
ση 0.1236039 ση 0.2053147 b1 0.09303694

ν 0.1158954 g1 -1.15261145
` 0.5545815

µ = 0.000196804, σ̄ = 0.01197680

6.3.3 Option Pricing

We want to compare our nonlinear model to the competing ones in a practical setting.

Volatility models have diverse applications in finance, but we are particularly interested in

option pricing. This setting is appropriate because it requires a model for the evolution of

volatility. First, we give a brief overview of option pricing under SV models, for a detailed

exposition see Fouque et al. [38]. A basic result in mathematical finance states that the

arbitrage-free price of an option is given by its expected discounted payoff under a special

measure Q, e.g. see Björk [8]. The measure Q must be equivalent to the observed measure P,

but they need not coincide. Under this measure all discounted traded assets are martingales,
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Figure 6.26: Plot of posterior function of f in (6.28).
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Figure 6.27: Plot of the estimated effect of return error εt on log-volatility ht+1 for all three
models.

meaning that the expected rate of returns on traded assets equals the risk free rate r, i.e.

EQ[ST ] = S0 exp{rT} (in case the asset pays dividends at a rate d, then r is replaced by

r − d). For stochastic volatility models there is a complication because the option price

of an asset also depends on the volatility process which is not traded. As a consequence,
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Figure 6.28: Plot of the estimated volatility from all three models and the EWMA volatility,
Jan 2002 to Dec 2005.

there is no way to hedge perfectly against random fluctuations in volatility. In this case

the market is said to be incomplete because there exist many alternative measures Q which

give consistent option prices, in the sense of absence of arbitrage. In our log-OU model, a

valid candidate for Q is any measure with dynamics

dSt = rStdt+ σtStdW̃t

d log(σ2
t ) =

[

a1

(
a0 − log(σ2

t )
)

+ b
(

ρλS
t +

√

1 − ρ2λσ
t

)]

dt+ bdB̃t

where W̃t, B̃t are Brownian motions with the same correlation ρ as under P, λS
t = (µ−r)/σt

and λσ
t is any adapted, suitably regular process (in particular it can depend on St, σt). The

terms λS
t and λσ

t define the change of drift in W̃t and B̃t, respectively, and are called the

market and volatility risk premia, respectively. The particular measure that provides the

observed option prices is determined by the investor’s risk preferences toward volatility, as

reflected in λσ
t . In practice, it is common to restrict attention to a simple class of measures

and use calibration to select the one that matches more closely the observed prices. Usually,
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the measure Q is assumed to belong to the same family of models as the observed measure

P, so in our log-OU example we would have

d log(σ2
t ) =

[
a′1(a

′
0 − log(σ2

t )) + bρλS
t

]
dt+ bdB̃t

under Q, and we would have to select the parameters a′1, a
′
0 by calibration.

Turning back to our discretized log-OU setting, the previous theory can be translated as

follows. For pricing options in the linear SV model we use the Q measure dynamics

St = St−1 exp
{
r − σ2

t σ̄
2/2 + σtσ̄εt

}
(6.31)

ht+1 = a′0 +

(

a′1 −
γst

σ2
ξ

)

ht + st

(

δ +
γ

σ2
ξ

(yt − ω)

)

+ σηηt (6.32)

where Rt = log(St/St−1), yt = log((Rt−r)2), st = sign(εt−λS
t ), λS

t = (µ−r)/(σ̄σt), {εt, ηt}

are standard normal with correlation ρ, and r is the daily risk free rate. Similarly for our

nonlinear SV model, the log-volatility dynamics become

ht+1 = a′0 + f(εt − λS
t ) +

(

a′1 −
γst

σ2
ξ

)

ht + st

(

δ +
γ

σ2
ξ

(yt − ω)

)

+ σηηt (6.33)

Notice that besides the values of a′0, a
′
1, all other parameters in these models are determined

by the P measure dynamics and can be estimated by observations. For completeness, we

also give the risk neutral dynamics for the EGARCH model, as proposed by Duan [30].

Since volatility for this model is non-stochastic, there is a unique measure Q for which

log-volatility follows

ht+1 = a0 + a1ht + b1[|εt − λS
t | + g1(εt − λS

t )] (6.34)
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where λS
t = (µ − r)/σt. Note that in the EGARCH model, all parameters of interest are

defined in terms of the observed measure. For European options, whose value depends only

on the price of the asset at the expiration time T , we need to calculate expectations of

the form EQ[f(ST )|S0, σ0]. The distribution of the asset prices in all three models specified

above cannot be given explicitly, so expectations under Q are estimated by Monte Carlo

simulation.

Our options data consist of a year’s worth of daily European option closing prices on the

S&P 500 index, from Jan to Dec 2006. The data come from the OptionMetrics database of

Wharton Research Data Services. For each day there are different contract specifications

offered, depending on expiry date and strike price. We restrict attention to the most liquid

contracts, so we only keep options whose strike price is within 10% of the current index

price. In order for the effects of different models to be distinguishable we need a sufficient

time horizon, so we look at contracts whose expiry date is at least one and two months into

the future. Longer expiration dates of up to one year are available, but we exclude these

because they are less liquid and their prices might depend on other considerations outside

our framework, for example interest rate risk. For each contract we have a highest bid and

lowest ask price, from which we form a single option price by taking their midpoint. Fur-

thermore, we remove options whose bid price is zero to avoid bias (because the ask price is

positive even for options with no value), as well as prices that violate no arbitrage conditions.

The clean data consist of 13,489 prices divided into four groups according to option type

(call or put) and expiration date (at least one or two months). On top of that, we extract

the required continuously compounded dividend and risk free rates from the data base, the

latter being computed from zero coupon bonds with approximately the same maturity date.

We use the fitted volatility models to estimate the observed option prices. At first, we make



CHAPTER 6. APPLICATIONS 182

the simplifying assumption that the volatility risk premium is zero, so that a ′0 = a0, a
′
1 = a1

and Q is uniquely defined by the fitted models. Theoretically, this describes the situation

when investors are neutral toward volatility risk, i.e. their risk preferences are independent

of volatility changes. In order to estimate the integral EQ[f(ST )|S0, σ0] by Monte Carlo

simulation, we generate daily paths of the index and volatility processes as described above.

For the initial volatility σ0 we use the EWMA estimate of volatility of that day for all three

models, because we want to compare results based only on their dynamics. Moreover, we

found that the EWMA estimates as starting values give better results for all three models

than do their intrinsic estimates. Finally, we use antithetic and control variable techniques

to improve the accuracy of the Monte Carlo method. The control variable we use is the

price of the option under constant volatility equal to σ0, which is given explicitly by the

Black-Scholes formula. The same technique for SV models is also advocated by Hull and

White [61]. We calculate the mean absolute error of the estimated prices for each of the

three models, using 50,000 simulated paths, and for the Black-Scholes model for constant

σ0 volatility. Table 6.10 presents the results by option type and expiry date. Overall, all

models seem do better for closest expiry dates and for put contracts. The Black-Scholes

errors are substantially higher, suggesting the constant volatility assumption is not empir-

ically supported. For varying volatility, the EGARCH and LSS models give very similar

results, whereas our nonlinear model seems to provide an improvement.

In order to better understand the differences between the models we look at the final dis-

tribution of the asset ST under Q, since it uniquely defines the option prices. Fig. 6.29

presents density estimates for the distribution of the 2-month index price together with

the theoretical log-normal density of the same variable under the Black-Scholes model. For

this plot, the values of S0, σ0 are set to those of the first day of options data. All three

non-constant volatility models exhibit an obvious negative skew compared to the log-normal
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Table 6.10: Mean absolute error of estimated option prices, Jan-Dec 2006, without volatility
risk premium; standard errors in parentheses.

Call Put
Model 1 month 2 months 1 month 2 months Total

B-S 0.31216 0.50622 0.28258 0.49303 0.39785
(0.00386) (0.00598) (0.00333) (0.00574) (0.00258)

EGARCH 0.19995 0.22491 0.17688 0.20691 0.20181
(0.00257) (0.00295) (0.002090) (0.00270) (0.00130)

LSS 0.19999 0.22879 0.18003 0.21169 0.20481
(0.00258) (0.00307) (0.00208) (0.00279) (0.00133)

NLSS 0.15602 0.202001 0.13736 0.18479 0.16972
(0.00220) (0.00304) (0.00188) (0.00290) (0.00129)

# obs. 3,219 3,336 3,543 3,391 13,489

density, even though all distributions have the same mean. This is a well documented prop-

erty of empirical option pricing measures and relates to the existence of the volatility smile,

e.g. see Dennis and Mayhew [27]. It has to do with the fact that, under the measure Q,

prices have the potential of a bigger downfall relative to the Black-Scholes model. We can

see from the plot that the NLSS model distribution has a fatter left tail, and this causes

the difference in the estimated option prices compared to the other models.

We also introduce risk premia in the SV models and calibrate the risk neutral measure Q to

observed option prices. We divide our option data in a training and test set of six months

each. We select the parameters a′0 and a′1 by minimizing the mean absolute option pricing

error for the first six months of data, and then estimate prices for the following six months

using these values. For the LSS model we got a′0 = −4.2565 × 10−5, a′1 = .98976 and for

the NLSS model we got a′0 = −.01425, a′1 = .97827. Table 6.11 presents the mean absolute

error of the estimated prices for the test period, where we also include the results for the

SV models without volatility risk premia (i.e. λσ = 0) for comparison. Overall, the error is

higher for the test period as compared to the whole year of data, but our previous remarks

still hold. The introduction of the risk premium offers an improvement for the LSS model,
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Figure 6.29: Plot of density estimates of the 2-month index level for the three volatility
models under the pricing measure Q, together with the theoretical log-normal density of
the Black-Scholes model.

but not for our NLSS model. Nevertheless, our model still provides lower pricing errors.

We now make some general comments. We have presented a simple way in which our GP

methodology can be practically applied in a SS setting. We extended the SS approach for

SV modeling of Harvey et al. [52] by introducing a nonlinear term in the dynamics. This

terms seems to compensate for certain effects of the required data transformation, and led

to better option pricing results in our example. Moreover, the nonlinearity can be treated

easily, requiring a small modification beyond Kalman filtering for linear models. Another

advantage of our method, owing to the relation with the LSS model, is that it can be readily

extended to a multivariate setting. For example, we can model the volatilities of many assets

using just a few volatility factors. On the negative side, we need a transformation to recast

the SV model into an approximate SS model, and we are essentially doing QML estimation.

As a result, we need big samples to ensure that our estimates are well behaved. For this

reason we used eight years of daily data in our application, which is a relatively big time
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span for such a model to be the consistent. In practice, we would opt for more frequent

data if we had access to them.

Table 6.11: Mean absolute error of estimated option prices, Jul-Dec 2006, with and without
volatility risk premia; standard errors in parentheses.

Call Put
Model 1 month 2 months 1 month 2 months Total

BS 0.37027 0.63214 0.31443 0.59249 0.48447
(0.00588) (0.00860) (0.00523) (0.00858) (0.00406)

EGARCH 0.25205 0.30365 0.2070431 0.27170 0.25976
(0.00380) (0.00400) (0.00310) (0.00367) (0.00188)

LSS (λσ = 0) 0.25426 0.30262 0.21133 0.27322 0.26150
(0.00379) (0.00428) (0.00310) (0.00388) (0.00174)

LSS (λσ 6= 0) 0.24346 0.27464 0.20247 0.24890 0.24301
(0.00353) (0.00378) (0.00271) (0.00324) (0.00169)

NLSS (λσ = 0) 0.18940 0.19695 0.15687 0.18142 0.18126
(0.00337) (0.00393) (0.00269) (0.00360) (0.00174)

NLSS (λσ 6= 0) 0.20272 0.22838 0.16718 0.20845 0.20224
(0.00330) (0.00349) (0.00258) (0.00313) (0.00160)

# obs. 1,547 1,805 1,691 1,830 6,873



Chapter 7

Summary and Future Work

7.1 Summary and Contributions

In this final chapter we provide a summary of the thesis and highlight our contributions.

Our main goal was the development of a nonparametric estimation methodology based on

GPs for analyzing time series. We adopted the FAR model of Chen and Tsay [22] for

describing the series dynamics and used GP regression for estimating the coefficient func-

tions, in analogy to the framework of O’Hagan [88] for independent data. Our methodology

has significant departures from O’Hagan, though, and our contributions lie in addressing

both practical and theoretical issues pertinent to the nature of time series. We proposed

an empirical Bayes procedure for specifying the GP prior that allows different smoothness

for different functions and leads to parsimonious models, and we described the resulting

estimation and prediction mechanics. In particular, our method can accommodate combi-

nations of constant and varying coefficients, and is geared toward providing models with

stable dynamics. We also compared it to available nonlinear and nonparametric methods.

We pointed out its advantages over threshold models and local estimation with regard to

modeling flexibility, and over splines with regard to extrapolation.

186
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In terms of applicability, we developed an approximate inference scheme that overcomes the

restrictions of our method on the sample sizes it can handle. Specifically, we extended the

reduced rank approximation technique from GP regression to our FAR setting. Our pro-

posed approximation scheme uses a simple representation for the functions and introduces

a small perturbation in the prior covariance kernels. It reduces our method’s computational

cost from cubic to linear in the data, and we provided evidence of its suitability for estimat-

ing smooth coefficient functions. Based on this approximation, we extended our method to

multivariate and SS models. For the latter, we indicated how they can be treated conve-

niently using the Kalman filter.

We also explored the theoretical properties of our method. We used the connection be-

tween GP and regularized regression to prove the consistency of our functional coefficient

estimates from a frequentist perspective. To this end, we used identifiability and ergodicity

conditions, assuming the smoothness of each function is known. We made a distinction be-

tween Markovian and more general time series regression models, adapting the conditions

accordingly. Moreover, we provided an asymptotic result for approximate inference which

established the convergence of the estimates to appropriate projections of the true functions.

Furthermore, we proposed an integrated way of performing statistical inference based on our

methodology. We developed a greedy model selection algorithm that is capable of captur-

ing a broad range of model specifications, and that avoids overfitting by allowing constant

coefficients. In addition, we suggested a suite of procedures for evaluating a model’s fit,

which were collected from the literature. These were especially suited for our method, and

they included statistical and graphical procedures based on residuals and simulation.
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Finally, we presented three applications of our methodology to real data sets. The first was

on a simple univariate series from natural sciences, whereas the second concerned a large-

sample bivariate series from financial econometrics. The last application involved our state-

space methodology for analyzing a stochastic volatility model, and also used financial data.

In all three cases we provided results from alternative approaches and we demonstrated

the advantages of our method. For the first and second applications, in particular, our

method gave more parsimonious models with at least as good predictive behavior as that

of competing ones. For the last application, our method permitted more flexibility in

the volatility dynamics and provided an improvement for option pricing relative to the

alternatives.

7.2 Future Work

We conclude by presenting directions for future research which we believe have special in-

terest and are likely to extend the applicability of our method. Initially, we would like

to try alternative estimation approaches for our model, and at a first level fully Bayesian

estimation. The likelihood of our model given the hyperparameters is Gaussian, there-

fore conditionally conjugate priors can be used for the mean of the coefficients and the

error variance. However, we still require appropriate priors for the smoothing parameters.

Moreover, the posterior is analytically intractable, so we would have to resort to MCMC

methods. One possible extension of the MCMC methodology would be the incorporation

of reversible jump schemes between models with constant and varying coefficients. Another

extension, which is particular to the approximation framework, would be to model number

and location of basis as free parameters, similar to the Bayesian adaptive regression splines

of DiMatteo et al. [28]. At a second level, we would like to perform estimation for our

model using error distributions other than Gaussian. Dropping the normality assumption,

our model can be viewed as a nonlinear, non-Gaussian state-space model where the function
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evaluations are the unobserved states. Both the likelihood of the model and the posterior

distribution of the coefficients become analytically intractable, but we can apply particle

filtering for approximating them numerically, where again reduced rank approximations

can speed up the process. Details of the filtering algorithm are given in Kitagawa [69] and

methods for maximum likelihood estimation in this setting are given in Johansen et al. [65].

Although MCMC and particle filters are significantly more involved and computationally

intensive than our empirical Bayes method, it would be instructive to compare the different

estimation approaches, especially in the latter of non-Gaussian errors and for small data sets.

Another important area of investigation is that of alternative specifications for our model.

First, we would like to experiment with different covariance kernels, besides the squared

exponential. Our choice of kernel so far was motivated by convenience and the need to

fit relatively smooth coefficient functions. An interesting possibility would be the use of

nonstationary kernels, i.e. kernels with variable smoothness at different areas of the input

space. There are at least two cases where this could be useful: one is for controlling the

shape of the functions at regions where we have less information, like boundaries or ar-

eas where the regressors are close to zero, and the other is for estimating coefficients with

abrupt changes, inspired by the wide applicability of TAR models. For the latter case, there

are nonstationary examples like the neural network kernel (see section 4.2.3 of Rasmussen

and Williams [96]) which permit the estimated function to have level shifts. In addition to

covariance kernels, we would also like to experiment with different prior mean functions. In

this respect we have only used constant functions, but in some cases it might be preferable

to allow more flexibility. For example, a sigmoid prior would be useful for controlling the

bias of the functional coefficient estimates separately outside the two ends of the observed

range. Lastly, we would like to examine adaptive modeling, where the coefficient arguments

are unknown linear combinations of a set of variables, with weights to be estimated from
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the data. Such models appear in section 8.4 of Fan and Yao [36].

Moreover, we would like to elaborate on the nonlinear state space methodology that we

have presented. There are still some issues which we have not addressed, such as measuring

the complexity of a fitted model and developing a structured model selection procedure.

We also want to test our method in a multivariate setting. A candidate application we have

identified in econometrics, and which is suited for our method concerns, factor models for

the term structure of interest rates. An example of this approach for linear SS models using

Kalman filtering is given in Duan and Simonato [31], and we want to build nonlinear ex-

tensions of this. For financial data especially, we also want to extend our model for dealing

with ARCH errors. As long as the distribution of the error is normal, our model can handle

parametric forms of conditional heteroskedasticity. While preserving conditional normality,

this feature can be incorporated in the filtering and likelihood computations and estimation

can be addressed in an integrated way.

Finally, we would like to further explore the theoretical properties of our model, and there

are at least three directions of research which we believe are worthwhile. The first con-

cerns establishing convergence rates for the estimators, to complement our consistency

result. These are useful for comparing nonparametric methods within smoothness classes

of functions for the true coefficients. They are also an important step toward the second

direction which relates to adaptive estimation. For our consistency result we assumed that

the smoothness of each function is known beforehand, but this is an unrealistic assump-

tion. Therefore,we would like to be able to evaluate or develop procedures for selecting

the relevant smoothing parameters. Moreover, the fixed RKHS assumption for the true

functions can be restrictive relative to general smoothness classes, so it would be interesting

to investigate procedures where the smoothness decreases with the amount of data. Lastly,
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we would also like to provide a consistency result for the model selection procedure we

presented, possibly including the constancy test.



Appendix A

Reproducing Kernel Hilbert Spaces

We provide a brief introduction to reproducing kernel Hilbert spaces (RKHS) together with

an overview of the basic results we use in Chapter 4. A more detailed exposition can be

found in Berlinet and Thomas-Agnan [7] or Rasmussen and Williams [96]. We begin with

the definition of a RKHS; let K be a Hilbert space of real functions with domain X and

inner product 〈·, ·〉K.

Definition A.1 (RKHS). The Hilbert space K is called a RKHS if all point evaluations are

bounded linear functionals.

An immediate consequence of Definition A.1, through the Riesz representation theorem, is

that for every x ∈ X there is an element kx ∈ K such that

f(x) = 〈f, kx〉K, ∀f ∈ K.

We note that RKHS are smooth spaces of functions, in the sense that norm convergence

implies pointwise convergence. To see this, let {fn}n≥1 be a sequence that converges to f
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in K, under the usual norm ‖f‖K =
√

〈f, f〉K. For any x ∈ X , we have

|fn(x) − f(x)| = |〈fn − f, kx〉K|

≤ M‖fn − f‖K, M > 0

It is obvious from this that the usual L2 space with Lebesgue measure is not a RKHS. We

also give the definition of a reproducing kernel for a general Hilbert space.

Definition A.2 (Reproducing Kernel). A function k : X ×X → R is a reproducing kernel

of the Hilbert space K if and only if

i. For any x ∈ X , k(·, x) ∈ K

ii. For any x ∈ X and f ∈ K, 〈f, k(·, x)〉K = f(x)

The second condition is called the reproducing property. An equivalent definition of a RKHS

is that of a Hilbert space that possesses a reproducing kernel. For a given RKHS K we can

find a reproducing kernel k : X × X → R by defining k(x, x′) = 〈kx, kx′〉K for all x, x′ ∈ X ;

it is easy to verify that k satisfies the conditions of Definition A.2. One important property

of reproducing kernels is that they are positive definite functions, where such a functions

are defined below.

Definition A.3 (Positive Definite Function). A function k : X × X → R is a positive

definite function if for all n ≥ 1, (a1, . . . , an) ∈ Rn and (x1, . . . , xn) ∈ X n

n∑

i=1

n∑

j=1

aiajk(xi, xj) ≥ 0

The following theorem establishes a correspondence between RKHS and positive definite

kernels.
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Theorem A.4 (Moore-Aronszajn). For every positive definite kernel k : X × X → R+

there exists a unique RKHS of real functions on X , and vice versa.

This allows us to define a RKHS by means of a positive definite kernel. Given a kernel k

and its corresponding RKHS K, we know that K contains the space of functions KL = {f :

f(·) =
∑n

i=1 αik(·, xi), ∀n ≥ 1, (a1, . . . , an) ∈ Rn, (x1, . . . , xn) ∈ X n}. In fact, K can be

constructed as the Cauchy complement of KL and for functions in KL their norm is given by

‖f‖2
K =

∑n
i=1

∑n
j=1 αiαjk(xi, xj). A list of different kernels and their corresponding RKHS

is given in [7], including standard examples from nonparametric regression like Sobolev

spaces. Next, we look at the eigen decomposition of a reproducing kernel. First we define

the eigenfunctions and eigenvalues of a kernel.

Definition A.5 (Kernel Eigenfunction). Let k be a positive definite kernel on a compact

space X and µ be a strictly positive measure on X . A function φ is said to be an eigenfunc-

tion of k, with associated eigenvalue λ, if

∫

x
k(x, x′)φ(x)dµ(x) = λφ(x′)

In general, there are an infinite number of eigenfunctions and they can be chosen such that

they are orthonormal w.r.t. µ. Mercer’s theorem allows us to express the kernel k in terms

of eigenfunctions and eigenvalues.

Theorem A.6 (Mercer). Let X ⊂ Rm be compact, µ be a strictly positive Borel measure

on X and k : X × X → R be a continuous positive definite kernel in L∞(X 2, µ2). Then

there exist eigenfunctions φi ∈ L2(X , µ) and associated eigenvalues λi > 0 such that

i.
∫

X φi(x)φj(x)dµ(x) = δij, where δij is the Kronecker delta

ii.
∑∞

i=1 λi <∞
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iii. k(x, x′) =
∑∞

i=1 λiφi(x)φi(x
′), where the convergence of the series is absolute and

uniform in X 2 (µ2 almost everywhere).

These eigenfunctions form a basis for the RKHS and we can express any function f ∈ K as

f(·) =
∞∑

j=1

fjφi(·)

where {fj}∞j=1 are given by fj =
∫
f(x)φj(x)dµ(x) and ‖f‖2

K =
∑

j f
2
j /λj .
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