Goal: Compare multiple means/proportions with plots and hypothesis tests.
Use the Labout Force Survey data for Toronto.
- Recreate the following plot, showing the density of job tenure in years for employed individuals, “faceted” by education level (
educ
).
Calculate the average tenure in years, broken down by education levels.Based on your results and the previous plot, does average tenure seem the same across education levels?
Perfmorm a permutation test for the equality of average tenure across different education levels. Do the results confirm your previous answer?
Create a normalised barplot showing the proportion of single people (marstat==6
) at different education levels.
Test whether the proportion of singles is equal across education levels. What do you conclude?
Recreate the following mosaic plot of age group (age_12
) vs education level.
LS0tDQp0aXRsZTogIlNUQUE1NyAtIFdvcmtTaGVldCAxMyINCmF1dGhvcjogJ05hbWU6ICAgICwgSUQjOiAgICcNCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KZWRpdG9yX29wdGlvbnM6IA0KICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lDQotLS0NCg0KKioqDQoNCioqR29hbCoqOiBDb21wYXJlIG11bHRpcGxlIG1lYW5zL3Byb3BvcnRpb25zIHdpdGggcGxvdHMgYW5kIGh5cG90aGVzaXMgdGVzdHMuDQoNCg0KVXNlIHRoZSBMYWJvdXQgRm9yY2UgU3VydmV5IGRhdGEgZm9yIFRvcm9udG8uDQpgYGB7ciwgaW5jbHVkZT1GQUxTRX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGZzID0gcmVhZF9jc3YoJy4uL2RhdGEvTEZTX1Rvcm9udG8uY3N2JykgDQpgYGANCg0KMS4gUmVjcmVhdGUgdGhlIGZvbGxvd2luZyBwbG90LCBzaG93aW5nIHRoZSBkZW5zaXR5IG9mIGpvYiB0ZW51cmUgKmluIHllYXJzKiBmb3IgZW1wbG95ZWQgaW5kaXZpZHVhbHMsICoiZmFjZXRlZCIqIGJ5IGVkdWNhdGlvbiBsZXZlbCAoYGVkdWNgKS4gDQoNCiFbXShpbWcvZmFjZXRlZF9kZW5zaXR5LlBORykNCg0KDQoyLiBDYWxjdWxhdGUgdGhlICphdmVyYWdlKiB0ZW51cmUgaW4geWVhcnMsIGJyb2tlbiBkb3duIGJ5IGVkdWNhdGlvbiBsZXZlbHMuQmFzZWQgb24geW91ciByZXN1bHRzIGFuZCB0aGUgcHJldmlvdXMgcGxvdCwgZG9lcyBhdmVyYWdlIHRlbnVyZSBzZWVtIHRoZSBzYW1lIGFjcm9zcyBlZHVjYXRpb24gbGV2ZWxzPw0KDQoNCjMuIFBlcmZtb3JtIGEgcGVybXV0YXRpb24gdGVzdCBmb3IgdGhlIGVxdWFsaXR5IG9mIGF2ZXJhZ2UgdGVudXJlIGFjcm9zcyBkaWZmZXJlbnQgZWR1Y2F0aW9uIGxldmVscy4gRG8gdGhlIHJlc3VsdHMgY29uZmlybSB5b3VyIHByZXZpb3VzIGFuc3dlcj8NCg0KDQo0LiBDcmVhdGUgYSAqbm9ybWFsaXNlZCogYmFycGxvdCBzaG93aW5nIHRoZSBwcm9wb3J0aW9uIG9mICpzaW5nbGUqIHBlb3BsZSAoYG1hcnN0YXQ9PTZgKSBhdCBkaWZmZXJlbnQgZWR1Y2F0aW9uIGxldmVscy4NCg0KDQo1LiBUZXN0IHdoZXRoZXIgdGhlIHByb3BvcnRpb24gb2Ygc2luZ2xlcyBpcyBlcXVhbCBhY3Jvc3MgZWR1Y2F0aW9uIGxldmVscy4gV2hhdCBkbyB5b3UgY29uY2x1ZGU/DQoNCjYuIFJlY3JlYXRlIHRoZSBmb2xsb3dpbmcgbW9zYWljIHBsb3Qgb2YgYWdlIGdyb3VwIChgYWdlXzEyYCkgdnMgZWR1Y2F0aW9uIGxldmVsLg0KDQoNCiFbXShpbWcvbW9zYWljX1dTLlBORykNCg==